Loading…
Semi-counterfactual cryptography
In counterfactual quantum key distribution (QKD), two remote parties can securely share random polarization-encoded bits through the blocking rather than the transmission of particles. We propose a semi-counterfactual QKD, i.e., one where the secret bit is shared, and also encoded, based on the bloc...
Saved in:
Published in: | Europhysics letters 2013-09, Vol.103 (6), p.60008 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In counterfactual quantum key distribution (QKD), two remote parties can securely share random polarization-encoded bits through the blocking rather than the transmission of particles. We propose a semi-counterfactual QKD, i.e., one where the secret bit is shared, and also encoded, based on the blocking or non-blocking of a particle. The scheme is thus semi-counterfactual and not based on polarization encoding. As with other counterfactual schemes and the Goldenberg-Vaidman protocol, but unlike BB84, the encoding states are orthogonal and security arises ultimately from single-particle non-locality. Unlike any of them, however, the secret bit generated is maximally indeterminate until the joint action of Alice and Bob. We prove the general security of the protocol, and study the most general photon-number-preserving incoherent attack in detail. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/103/60008 |