Loading…

Shape-controlled percolation transition in 2D random packing of asymmetric dimers

In this paper, we report on an experimental investigation of a shape-controlled percolation transition in two-dimensional (2D) amorphous packing of dimers without long-range order. In the maximally random jammed (MRJ) packing of asymmetric dimers consisting of head and body, a dramatic increase in t...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2015-03, Vol.109 (6), p.66002-p1-66002-p6
Main Authors: Han, Youngkyu, Lee, Juncheol, Choi, Siyoung Q., Choi, Myung Chul, Kim, Mahn Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we report on an experimental investigation of a shape-controlled percolation transition in two-dimensional (2D) amorphous packing of dimers without long-range order. In the maximally random jammed (MRJ) packing of asymmetric dimers consisting of head and body, a dramatic increase in the connectivity of heads upon increasing the head-to-body size ratio γ leads to a percolation transition of the heads at the well-defined percolation threshold. In comparison with binary disks, the existence of a bond in dimers causes the heads to be homogeneously distributed over a system by inhibiting the local segregation. Interestingly, we found, however, that the cluster structure at the percolation threshold is insensitive to the bond, even though the existence of the bonds affects the percolation threshold as well as the head distribution. The fractal dimensions at the percolation threshold obey the universal law of the 2D percolation theory independently of the existence of bonds. Our finding can provide us with a new perspective of interesting applications of randomly assembled binary composites by using the homogeneous particle distribution and the sensitively tunable connectivity under particle shape control.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/109/66002