Loading…
TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion
We report for the first time fabrication of self-aligned hexagonally closed-packed titania nanotube arrays of over 1000 μm in length and aspect ratio ≈10 000 by potentiostatic anodization of titanium. We describe a process by which such thick nanotube array films can be transformed into self-standin...
Saved in:
Published in: | Journal of physical chemistry. C 2007-10, Vol.111 (41), p.14992-14997 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report for the first time fabrication of self-aligned hexagonally closed-packed titania nanotube arrays of over 1000 μm in length and aspect ratio ≈10 000 by potentiostatic anodization of titanium. We describe a process by which such thick nanotube array films can be transformed into self-standing, flat or cylindrical, mechanically robust, polycrystalline TiO2 membranes of precisely controlled nanoscale porosity. The self-standing membranes are characterized using Brunauer−Emmett−Teller surface area measurements, glancing angle X-ray diffraction, and transmission electron microscopy. In initial application, such membranes are used to control the diffusion of phenol red. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp075258r |