Loading…
Environmental energy and evolutionary rates in flowering plants
The latitudinal gradient in species richness is a pervasive feature of the living world, but its underlying causes remain unclear. We evaluated the hypothesis that environmental energy drives evolutionary rates and thereby diversification in flowering plants. We estimated energy levels across angios...
Saved in:
Published in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2004-10, Vol.271 (1553), p.2195-2200 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The latitudinal gradient in species richness is a pervasive feature of the living world, but its underlying causes remain unclear. We evaluated the hypothesis that environmental energy drives evolutionary rates and thereby diversification in flowering plants. We estimated energy levels across angiosperm family distributions in terms of evapotranspiration, temperature and UV radiation taken from satellite and climate databases. Using the most comprehensive DNA-based phylogenetic tree for angiosperms to date, analysis of 86 sister-family comparisons shows that molecular evolutionary rates have indeed been faster in high-energy regions, but that this is not an intermediate step between energy and diversity. Energy has strong, but independent effects on both species richness and molecular evolutionary rates. |
---|---|
ISSN: | 0962-8452 1471-2954 |
DOI: | 10.1098/rspb.2004.2849 |