Loading…

Direct and Indirect Effects of Environmental Temperature on the Evolution of Reproductive Strategies: An Information‐Theoretic Approach

For ectotherms, environmental temperature affects the optimal size and number of offspring via multiple mechanisms. First, temperature influences the performance of offspring, which directly affects the optimal size of offspring. Second, temperature influences maternal body size, which indirectly af...

Full description

Saved in:
Bibliographic Details
Published in:The American naturalist 2006-10, Vol.168 (4), p.E123-E135
Main Authors: Angilletta Jr, Michael J., Oufiero, Christopher E., Leaché, Adam D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For ectotherms, environmental temperature affects the optimal size and number of offspring via multiple mechanisms. First, temperature influences the performance of offspring, which directly affects the optimal size of offspring. Second, temperature influences maternal body size, which indirectly affects the optimal size and/or number of offspring when larger females acquire more energetic resources or provide better parental care. Although traditional statistical approaches might distinguish the relative importance of these effects, an information‐theoretic approach enables one to estimate effects more accurately by identifying the best evolutionary model in a set of candidate models. Here, we use the Akaike Information Criterion to calculate the likelihoods of seven path models, each derived from one or more optimality models of reproduction. Variation in reproductive traits among populations of lizards (Sceloporus undulatus) was used to quantify support for the models. Our results overwhelmingly supported a model based on an indirect effect of temperature that is mediated by maternal size. Path coefficients of this model were consistent with the hypotheses that, first, larger females can acquire more energy for reproduction and, second, the survival of offspring depends on both their size and their density. Our analyses exemplify how information theory can identify evolutionary hypotheses that merit experimental testing.
ISSN:0003-0147
1537-5323
DOI:10.1086/507880