Loading…

An Accelerated Life Test Model Based on Reliability Kinetics

Inferences from accelerated life tests typically involve extrapolation in stress. For this reason, it is important to use statistical models that have their basis in the physics and chemistry of the important failure mechanism(s). The standard accelerated failure time regression models (based for ex...

Full description

Saved in:
Bibliographic Details
Published in:Technometrics 1995-05, Vol.37 (2), p.133-146
Main Authors: Meeker, William Q., LuValle, Michael J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-824752bab5920bbda09840401c22c56c75fd4d920bd427df2c33b728c0f17c043
cites cdi_FETCH-LOGICAL-c284t-824752bab5920bbda09840401c22c56c75fd4d920bd427df2c33b728c0f17c043
container_end_page 146
container_issue 2
container_start_page 133
container_title Technometrics
container_volume 37
creator Meeker, William Q.
LuValle, Michael J.
description Inferences from accelerated life tests typically involve extrapolation in stress. For this reason, it is important to use statistical models that have their basis in the physics and chemistry of the important failure mechanism(s). The standard accelerated failure time regression models (based for example on Weibull or lognormal approximations to the failure-time distribution at a given stress and linear scaling of time) are adequate for modeling some simple chemical processes that lead to failure. In this article we present the results from a humidity-accelerated life test of conductive anodic filament failures on printed circuit boards. Standard accelerated life test models are clearly inadequate for these data. Using an approximate chemical kinetic model of the failure process as a basis, we derive an alternative, more general, class of accelerated life test models. We illustrate the use of likelihood-based methods to estimate the model parameters. The new models fit the data better than the traditional accelerated life test models and provide extrapolations that are more consistent with actual field data.
doi_str_mv 10.1080/00401706.1995.10484298
format article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_jstor_primary_10_2307_1269615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1269615</jstor_id><sourcerecordid>1269615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-824752bab5920bbda09840401c22c56c75fd4d920bd427df2c33b728c0f17c043</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMouK5-BenBa_XlJW1S8FIX_-GKIOs5pGkCWbLtkhRkv70t66o3Tw_mzQzDj5BLCtcUJNwAcKACymtaVcUoccmxkkdkRgsmchTIjslsMuWT65ScpbQGoAylmJHbustqY2ywUQ-2zZbe2Wxl05C99q0N2Z1Oo9p32bsNXjc--GGXvfjODt6kc3LidEj24vvOycfD_WrxlC_fHp8X9TI3KPmQS-SiwEY3RYXQNK2GSvJptEE0RWlE4VreTr-Wo2gdGsYagdKAo8IAZ3NS7ntN7FOK1qlt9Bsdd4qCmhioAwM1MVAHBmPwah_c6mR0cFF3xqefNCsYAMNf2zoNffxbjgyEolhW5QhzTuq9zXeujxv92cfQqkHvQh8P1eyfRV9zIHlj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Accelerated Life Test Model Based on Reliability Kinetics</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Meeker, William Q. ; LuValle, Michael J.</creator><creatorcontrib>Meeker, William Q. ; LuValle, Michael J.</creatorcontrib><description>Inferences from accelerated life tests typically involve extrapolation in stress. For this reason, it is important to use statistical models that have their basis in the physics and chemistry of the important failure mechanism(s). The standard accelerated failure time regression models (based for example on Weibull or lognormal approximations to the failure-time distribution at a given stress and linear scaling of time) are adequate for modeling some simple chemical processes that lead to failure. In this article we present the results from a humidity-accelerated life test of conductive anodic filament failures on printed circuit boards. Standard accelerated life test models are clearly inadequate for these data. Using an approximate chemical kinetic model of the failure process as a basis, we derive an alternative, more general, class of accelerated life test models. We illustrate the use of likelihood-based methods to estimate the model parameters. The new models fit the data better than the traditional accelerated life test models and provide extrapolations that are more consistent with actual field data.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1995.10484298</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor &amp; Francis Group</publisher><subject>Anions ; Applied sciences ; Censored data ; Copper ; Differential equations ; Electronics ; Exact sciences and technology ; Humidity ; Kinetics ; Life data analysis ; Mathematical extrapolation ; Maximum likelihood ; Modeling ; Parametric models ; Printed circuits ; Regression analysis ; Reliability ; Test data ; Testing, measurement, noise and reliability</subject><ispartof>Technometrics, 1995-05, Vol.37 (2), p.133-146</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1995</rights><rights>Copyright 1995 The American Statistical Association and the American Society for Quality Control</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-824752bab5920bbda09840401c22c56c75fd4d920bd427df2c33b728c0f17c043</citedby><cites>FETCH-LOGICAL-c284t-824752bab5920bbda09840401c22c56c75fd4d920bd427df2c33b728c0f17c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1269615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1269615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3530032$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Meeker, William Q.</creatorcontrib><creatorcontrib>LuValle, Michael J.</creatorcontrib><title>An Accelerated Life Test Model Based on Reliability Kinetics</title><title>Technometrics</title><description>Inferences from accelerated life tests typically involve extrapolation in stress. For this reason, it is important to use statistical models that have their basis in the physics and chemistry of the important failure mechanism(s). The standard accelerated failure time regression models (based for example on Weibull or lognormal approximations to the failure-time distribution at a given stress and linear scaling of time) are adequate for modeling some simple chemical processes that lead to failure. In this article we present the results from a humidity-accelerated life test of conductive anodic filament failures on printed circuit boards. Standard accelerated life test models are clearly inadequate for these data. Using an approximate chemical kinetic model of the failure process as a basis, we derive an alternative, more general, class of accelerated life test models. We illustrate the use of likelihood-based methods to estimate the model parameters. The new models fit the data better than the traditional accelerated life test models and provide extrapolations that are more consistent with actual field data.</description><subject>Anions</subject><subject>Applied sciences</subject><subject>Censored data</subject><subject>Copper</subject><subject>Differential equations</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Humidity</subject><subject>Kinetics</subject><subject>Life data analysis</subject><subject>Mathematical extrapolation</subject><subject>Maximum likelihood</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Printed circuits</subject><subject>Regression analysis</subject><subject>Reliability</subject><subject>Test data</subject><subject>Testing, measurement, noise and reliability</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAUxIMouK5-BenBa_XlJW1S8FIX_-GKIOs5pGkCWbLtkhRkv70t66o3Tw_mzQzDj5BLCtcUJNwAcKACymtaVcUoccmxkkdkRgsmchTIjslsMuWT65ScpbQGoAylmJHbustqY2ywUQ-2zZbe2Wxl05C99q0N2Z1Oo9p32bsNXjc--GGXvfjODt6kc3LidEj24vvOycfD_WrxlC_fHp8X9TI3KPmQS-SiwEY3RYXQNK2GSvJptEE0RWlE4VreTr-Wo2gdGsYagdKAo8IAZ3NS7ntN7FOK1qlt9Bsdd4qCmhioAwM1MVAHBmPwah_c6mR0cFF3xqefNCsYAMNf2zoNffxbjgyEolhW5QhzTuq9zXeujxv92cfQqkHvQh8P1eyfRV9zIHlj</recordid><startdate>19950501</startdate><enddate>19950501</enddate><creator>Meeker, William Q.</creator><creator>LuValle, Michael J.</creator><general>Taylor &amp; Francis Group</general><general>The American Society for Quality Control and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950501</creationdate><title>An Accelerated Life Test Model Based on Reliability Kinetics</title><author>Meeker, William Q. ; LuValle, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-824752bab5920bbda09840401c22c56c75fd4d920bd427df2c33b728c0f17c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Anions</topic><topic>Applied sciences</topic><topic>Censored data</topic><topic>Copper</topic><topic>Differential equations</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Humidity</topic><topic>Kinetics</topic><topic>Life data analysis</topic><topic>Mathematical extrapolation</topic><topic>Maximum likelihood</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Printed circuits</topic><topic>Regression analysis</topic><topic>Reliability</topic><topic>Test data</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeker, William Q.</creatorcontrib><creatorcontrib>LuValle, Michael J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meeker, William Q.</au><au>LuValle, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Accelerated Life Test Model Based on Reliability Kinetics</atitle><jtitle>Technometrics</jtitle><date>1995-05-01</date><risdate>1995</risdate><volume>37</volume><issue>2</issue><spage>133</spage><epage>146</epage><pages>133-146</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>Inferences from accelerated life tests typically involve extrapolation in stress. For this reason, it is important to use statistical models that have their basis in the physics and chemistry of the important failure mechanism(s). The standard accelerated failure time regression models (based for example on Weibull or lognormal approximations to the failure-time distribution at a given stress and linear scaling of time) are adequate for modeling some simple chemical processes that lead to failure. In this article we present the results from a humidity-accelerated life test of conductive anodic filament failures on printed circuit boards. Standard accelerated life test models are clearly inadequate for these data. Using an approximate chemical kinetic model of the failure process as a basis, we derive an alternative, more general, class of accelerated life test models. We illustrate the use of likelihood-based methods to estimate the model parameters. The new models fit the data better than the traditional accelerated life test models and provide extrapolations that are more consistent with actual field data.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00401706.1995.10484298</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 1995-05, Vol.37 (2), p.133-146
issn 0040-1706
1537-2723
language eng
recordid cdi_jstor_primary_10_2307_1269615
source JSTOR Archival Journals and Primary Sources Collection
subjects Anions
Applied sciences
Censored data
Copper
Differential equations
Electronics
Exact sciences and technology
Humidity
Kinetics
Life data analysis
Mathematical extrapolation
Maximum likelihood
Modeling
Parametric models
Printed circuits
Regression analysis
Reliability
Test data
Testing, measurement, noise and reliability
title An Accelerated Life Test Model Based on Reliability Kinetics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Accelerated%20Life%20Test%20Model%20Based%20on%20Reliability%20Kinetics&rft.jtitle=Technometrics&rft.au=Meeker,%20William%20Q.&rft.date=1995-05-01&rft.volume=37&rft.issue=2&rft.spage=133&rft.epage=146&rft.pages=133-146&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.1995.10484298&rft_dat=%3Cjstor_pasca%3E1269615%3C/jstor_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-824752bab5920bbda09840401c22c56c75fd4d920bd427df2c33b728c0f17c043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1269615&rfr_iscdi=true