Loading…
MCMC Control Spreadsheets for Exponential Mixture Estimation
This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack...
Saved in:
Published in: | Journal of computational and graphical statistics 1999-06, Vol.8 (2), p.298-317 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53 |
container_end_page | 317 |
container_issue | 2 |
container_start_page | 298 |
container_title | Journal of computational and graphical statistics |
container_volume | 8 |
creator | Gruet, Marie-Anne Philippe, Anne Robert, Christian P. |
description | This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack of stability in the allocations of the observations to the different components of the mixture. The setup is extended to the case when the number of components in the mixture is unknown and a reversible jump MCMC technique is implemented. The results are illustrated on simulations and a real dataset. |
doi_str_mv | 10.1080/10618600.1999.10474815 |
format | article |
fullrecord | <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_10_2307_1390638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1390638</jstor_id><sourcerecordid>1390638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4MoOKdfQXrw4qGaN2nTBLyMUp2w4UE9h6xNWUbXjCTq9u1NqRNvnt4_PL_3hQeha8B3gDm-B8yAMxwnIURcZUXGIT9BE8hpkZIC8tPYRygdqHN04f0GYwxMFBP0sCyXZVLaPjjbJa87p1Xj11oHn7TWJdV-Z3vdB6O6ZGn24cPppPLBbFUwtr9EZ63qvL76qVP0_li9lfN08fL0XM4WaU24CCnhkDFBoc0JgZZkjeKcwIqLlYa8bhUlWUEzXjACWVOzOqeKKi2ahhFekyanU3Q73l2rTu5c_O4O0ioj57OFHHaYMM4Yp58QWTaytbPeO93-BgDLwZc8-pKDL3n0FYM3Y3Djg3V_U4TiQgIVmFEesdmImT4K2qov67pGBnXorGud6mvjJf3n1TciUntn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MCMC Control Spreadsheets for Exponential Mixture Estimation</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><source>JSTOR</source><creator>Gruet, Marie-Anne ; Philippe, Anne ; Robert, Christian P.</creator><creatorcontrib>Gruet, Marie-Anne ; Philippe, Anne ; Robert, Christian P.</creatorcontrib><description>This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack of stability in the allocations of the observations to the different components of the mixture. The setup is extended to the case when the number of components in the mixture is unknown and a reversible jump MCMC technique is implemented. The results are illustrated on simulations and a real dataset.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.1999.10474815</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Allocation map ; Central limit theorem ; Convergence control ; Datasets ; Density estimation ; Estimators ; Gibbs sampler ; Histograms ; Identifiability ; Legends ; Life Sciences ; Normality test ; P values ; Parameterization ; Reversible jump ; Riemann sums ; Spreadsheets ; Sub-sampling</subject><ispartof>Journal of computational and graphical statistics, 1999-06, Vol.8 (2), p.298-317</ispartof><rights>Copyright Taylor & Francis Group, LLC 1999</rights><rights>Copyright 1999 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53</citedby><cites>FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53</cites><orcidid>0000-0003-3644-7464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1390638$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1390638$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02686683$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gruet, Marie-Anne</creatorcontrib><creatorcontrib>Philippe, Anne</creatorcontrib><creatorcontrib>Robert, Christian P.</creatorcontrib><title>MCMC Control Spreadsheets for Exponential Mixture Estimation</title><title>Journal of computational and graphical statistics</title><description>This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack of stability in the allocations of the observations to the different components of the mixture. The setup is extended to the case when the number of components in the mixture is unknown and a reversible jump MCMC technique is implemented. The results are illustrated on simulations and a real dataset.</description><subject>Allocation map</subject><subject>Central limit theorem</subject><subject>Convergence control</subject><subject>Datasets</subject><subject>Density estimation</subject><subject>Estimators</subject><subject>Gibbs sampler</subject><subject>Histograms</subject><subject>Identifiability</subject><subject>Legends</subject><subject>Life Sciences</subject><subject>Normality test</subject><subject>P values</subject><subject>Parameterization</subject><subject>Reversible jump</subject><subject>Riemann sums</subject><subject>Spreadsheets</subject><subject>Sub-sampling</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYh4MoOKdfQXrw4qGaN2nTBLyMUp2w4UE9h6xNWUbXjCTq9u1NqRNvnt4_PL_3hQeha8B3gDm-B8yAMxwnIURcZUXGIT9BE8hpkZIC8tPYRygdqHN04f0GYwxMFBP0sCyXZVLaPjjbJa87p1Xj11oHn7TWJdV-Z3vdB6O6ZGn24cPppPLBbFUwtr9EZ63qvL76qVP0_li9lfN08fL0XM4WaU24CCnhkDFBoc0JgZZkjeKcwIqLlYa8bhUlWUEzXjACWVOzOqeKKi2ahhFekyanU3Q73l2rTu5c_O4O0ioj57OFHHaYMM4Yp58QWTaytbPeO93-BgDLwZc8-pKDL3n0FYM3Y3Djg3V_U4TiQgIVmFEesdmImT4K2qov67pGBnXorGud6mvjJf3n1TciUntn</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Gruet, Marie-Anne</creator><creator>Philippe, Anne</creator><creator>Robert, Christian P.</creator><general>Taylor & Francis Group</general><general>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</general><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3644-7464</orcidid></search><sort><creationdate>19990601</creationdate><title>MCMC Control Spreadsheets for Exponential Mixture Estimation</title><author>Gruet, Marie-Anne ; Philippe, Anne ; Robert, Christian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Allocation map</topic><topic>Central limit theorem</topic><topic>Convergence control</topic><topic>Datasets</topic><topic>Density estimation</topic><topic>Estimators</topic><topic>Gibbs sampler</topic><topic>Histograms</topic><topic>Identifiability</topic><topic>Legends</topic><topic>Life Sciences</topic><topic>Normality test</topic><topic>P values</topic><topic>Parameterization</topic><topic>Reversible jump</topic><topic>Riemann sums</topic><topic>Spreadsheets</topic><topic>Sub-sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruet, Marie-Anne</creatorcontrib><creatorcontrib>Philippe, Anne</creatorcontrib><creatorcontrib>Robert, Christian P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruet, Marie-Anne</au><au>Philippe, Anne</au><au>Robert, Christian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MCMC Control Spreadsheets for Exponential Mixture Estimation</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>8</volume><issue>2</issue><spage>298</spage><epage>317</epage><pages>298-317</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack of stability in the allocations of the observations to the different components of the mixture. The setup is extended to the case when the number of components in the mixture is unknown and a reversible jump MCMC technique is implemented. The results are illustrated on simulations and a real dataset.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/10618600.1999.10474815</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3644-7464</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8600 |
ispartof | Journal of computational and graphical statistics, 1999-06, Vol.8 (2), p.298-317 |
issn | 1061-8600 1537-2715 |
language | eng |
recordid | cdi_jstor_primary_10_2307_1390638 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list); JSTOR |
subjects | Allocation map Central limit theorem Convergence control Datasets Density estimation Estimators Gibbs sampler Histograms Identifiability Legends Life Sciences Normality test P values Parameterization Reversible jump Riemann sums Spreadsheets Sub-sampling |
title | MCMC Control Spreadsheets for Exponential Mixture Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MCMC%20Control%20Spreadsheets%20for%20Exponential%20Mixture%20Estimation&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Gruet,%20Marie-Anne&rft.date=1999-06-01&rft.volume=8&rft.issue=2&rft.spage=298&rft.epage=317&rft.pages=298-317&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.1999.10474815&rft_dat=%3Cjstor_infor%3E1390638%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1390638&rfr_iscdi=true |