Loading…

MCMC Control Spreadsheets for Exponential Mixture Estimation

This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics 1999-06, Vol.8 (2), p.298-317
Main Authors: Gruet, Marie-Anne, Philippe, Anne, Robert, Christian P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53
cites cdi_FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53
container_end_page 317
container_issue 2
container_start_page 298
container_title Journal of computational and graphical statistics
container_volume 8
creator Gruet, Marie-Anne
Philippe, Anne
Robert, Christian P.
description This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack of stability in the allocations of the observations to the different components of the mixture. The setup is extended to the case when the number of components in the mixture is unknown and a reversible jump MCMC technique is implemented. The results are illustrated on simulations and a real dataset.
doi_str_mv 10.1080/10618600.1999.10474815
format article
fullrecord <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_10_2307_1390638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1390638</jstor_id><sourcerecordid>1390638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4MoOKdfQXrw4qGaN2nTBLyMUp2w4UE9h6xNWUbXjCTq9u1NqRNvnt4_PL_3hQeha8B3gDm-B8yAMxwnIURcZUXGIT9BE8hpkZIC8tPYRygdqHN04f0GYwxMFBP0sCyXZVLaPjjbJa87p1Xj11oHn7TWJdV-Z3vdB6O6ZGn24cPppPLBbFUwtr9EZ63qvL76qVP0_li9lfN08fL0XM4WaU24CCnhkDFBoc0JgZZkjeKcwIqLlYa8bhUlWUEzXjACWVOzOqeKKi2ahhFekyanU3Q73l2rTu5c_O4O0ioj57OFHHaYMM4Yp58QWTaytbPeO93-BgDLwZc8-pKDL3n0FYM3Y3Djg3V_U4TiQgIVmFEesdmImT4K2qov67pGBnXorGud6mvjJf3n1TciUntn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MCMC Control Spreadsheets for Exponential Mixture Estimation</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><source>JSTOR</source><creator>Gruet, Marie-Anne ; Philippe, Anne ; Robert, Christian P.</creator><creatorcontrib>Gruet, Marie-Anne ; Philippe, Anne ; Robert, Christian P.</creatorcontrib><description>This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack of stability in the allocations of the observations to the different components of the mixture. The setup is extended to the case when the number of components in the mixture is unknown and a reversible jump MCMC technique is implemented. The results are illustrated on simulations and a real dataset.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.1999.10474815</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Allocation map ; Central limit theorem ; Convergence control ; Datasets ; Density estimation ; Estimators ; Gibbs sampler ; Histograms ; Identifiability ; Legends ; Life Sciences ; Normality test ; P values ; Parameterization ; Reversible jump ; Riemann sums ; Spreadsheets ; Sub-sampling</subject><ispartof>Journal of computational and graphical statistics, 1999-06, Vol.8 (2), p.298-317</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><rights>Copyright 1999 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53</citedby><cites>FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53</cites><orcidid>0000-0003-3644-7464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1390638$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1390638$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02686683$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gruet, Marie-Anne</creatorcontrib><creatorcontrib>Philippe, Anne</creatorcontrib><creatorcontrib>Robert, Christian P.</creatorcontrib><title>MCMC Control Spreadsheets for Exponential Mixture Estimation</title><title>Journal of computational and graphical statistics</title><description>This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack of stability in the allocations of the observations to the different components of the mixture. The setup is extended to the case when the number of components in the mixture is unknown and a reversible jump MCMC technique is implemented. The results are illustrated on simulations and a real dataset.</description><subject>Allocation map</subject><subject>Central limit theorem</subject><subject>Convergence control</subject><subject>Datasets</subject><subject>Density estimation</subject><subject>Estimators</subject><subject>Gibbs sampler</subject><subject>Histograms</subject><subject>Identifiability</subject><subject>Legends</subject><subject>Life Sciences</subject><subject>Normality test</subject><subject>P values</subject><subject>Parameterization</subject><subject>Reversible jump</subject><subject>Riemann sums</subject><subject>Spreadsheets</subject><subject>Sub-sampling</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYh4MoOKdfQXrw4qGaN2nTBLyMUp2w4UE9h6xNWUbXjCTq9u1NqRNvnt4_PL_3hQeha8B3gDm-B8yAMxwnIURcZUXGIT9BE8hpkZIC8tPYRygdqHN04f0GYwxMFBP0sCyXZVLaPjjbJa87p1Xj11oHn7TWJdV-Z3vdB6O6ZGn24cPppPLBbFUwtr9EZ63qvL76qVP0_li9lfN08fL0XM4WaU24CCnhkDFBoc0JgZZkjeKcwIqLlYa8bhUlWUEzXjACWVOzOqeKKi2ahhFekyanU3Q73l2rTu5c_O4O0ioj57OFHHaYMM4Yp58QWTaytbPeO93-BgDLwZc8-pKDL3n0FYM3Y3Djg3V_U4TiQgIVmFEesdmImT4K2qov67pGBnXorGud6mvjJf3n1TciUntn</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Gruet, Marie-Anne</creator><creator>Philippe, Anne</creator><creator>Robert, Christian P.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</general><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3644-7464</orcidid></search><sort><creationdate>19990601</creationdate><title>MCMC Control Spreadsheets for Exponential Mixture Estimation</title><author>Gruet, Marie-Anne ; Philippe, Anne ; Robert, Christian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Allocation map</topic><topic>Central limit theorem</topic><topic>Convergence control</topic><topic>Datasets</topic><topic>Density estimation</topic><topic>Estimators</topic><topic>Gibbs sampler</topic><topic>Histograms</topic><topic>Identifiability</topic><topic>Legends</topic><topic>Life Sciences</topic><topic>Normality test</topic><topic>P values</topic><topic>Parameterization</topic><topic>Reversible jump</topic><topic>Riemann sums</topic><topic>Spreadsheets</topic><topic>Sub-sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruet, Marie-Anne</creatorcontrib><creatorcontrib>Philippe, Anne</creatorcontrib><creatorcontrib>Robert, Christian P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruet, Marie-Anne</au><au>Philippe, Anne</au><au>Robert, Christian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MCMC Control Spreadsheets for Exponential Mixture Estimation</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>8</volume><issue>2</issue><spage>298</spage><epage>317</epage><pages>298-317</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>This article presents Bayesian inference for exponential mixtures, including the choice of a noninformative prior based on a location-scale reparameterization of the mixture. Adapted control sheets are proposed for studying the convergence of the associated Gibbs sampler. They exhibit a strong lack of stability in the allocations of the observations to the different components of the mixture. The setup is extended to the case when the number of components in the mixture is unknown and a reversible jump MCMC technique is implemented. The results are illustrated on simulations and a real dataset.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10618600.1999.10474815</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3644-7464</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 1999-06, Vol.8 (2), p.298-317
issn 1061-8600
1537-2715
language eng
recordid cdi_jstor_primary_10_2307_1390638
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list); JSTOR
subjects Allocation map
Central limit theorem
Convergence control
Datasets
Density estimation
Estimators
Gibbs sampler
Histograms
Identifiability
Legends
Life Sciences
Normality test
P values
Parameterization
Reversible jump
Riemann sums
Spreadsheets
Sub-sampling
title MCMC Control Spreadsheets for Exponential Mixture Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MCMC%20Control%20Spreadsheets%20for%20Exponential%20Mixture%20Estimation&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Gruet,%20Marie-Anne&rft.date=1999-06-01&rft.volume=8&rft.issue=2&rft.spage=298&rft.epage=317&rft.pages=298-317&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.1999.10474815&rft_dat=%3Cjstor_infor%3E1390638%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-28146931f5221f24da8821b89be15cfa324734876214dc6c53a3ae9dd628c2d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1390638&rfr_iscdi=true