Loading…
Understanding Time-Series Regression Estimators
A large number of methods have been developed for estimating time-series regression parameters. Students and practitioners have a difficult time understanding what these various methods are, let alone picking the most appropriate one for their application. This article explains how these methods are...
Saved in:
Published in: | The American statistician 1999-11, Vol.53 (4), p.342-348 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-fd342e9fc89c7a5060bebbdbcf73abd9efde7e12e5a2bc9dd304e72edd911eee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-fd342e9fc89c7a5060bebbdbcf73abd9efde7e12e5a2bc9dd304e72edd911eee3 |
container_end_page | 348 |
container_issue | 4 |
container_start_page | 342 |
container_title | The American statistician |
container_volume | 53 |
creator | Choudhury, Askar H. Hubata, Robert St. Louis, Robert D. |
description | A large number of methods have been developed for estimating time-series regression parameters. Students and practitioners have a difficult time understanding what these various methods are, let alone picking the most appropriate one for their application. This article explains how these methods are related. A chronology for the development of the various methods is presented, followed by a logical characterization of the methods. An examination of current computational techniques and computing power leads to the conclusion that exact maximum likelihood estimators should be used in almost all cases where regression models have autoregressive, moving average, or mixed autoregressive-moving average error structures. |
doi_str_mv | 10.1080/00031305.1999.10474487 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_10_2307_2686054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2686054</jstor_id><sourcerecordid>2686054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-fd342e9fc89c7a5060bebbdbcf73abd9efde7e12e5a2bc9dd304e72edd911eee3</originalsourceid><addsrcrecordid>eNqFkE1rAjEURUNpodb2LxRpux3N10ySpYj9AKHQ6jpkJi8yohObjBT_fTOo1E3p6pHHuTfJQeie4CHBEo8wxowwnA-JUiqtuOBcigvUIzkTGRWMXKJeB2UddY1uYlylIxYF7aHRorEQYmsaWzfLwbzeQPYJoYY4-IBlgBhr3wymsa03pvUh3qIrZ9YR7o6zjxbP0_nkNZu9v7xNxrOsYky1mbOMU1CukqoSJscFLqEsbVk5wUxpFTgLAgiF3NCyUtYyzEFQsFYRAgCsjx4Ovdvgv3YQW73yu9CkKzWlkotC5jRBj39BRORYcsYLmajiQFXBxxjA6W1Ivwl7TbDuDOqTQd0Z1CeDKfh0rDexMmsXTFPV8TdNOVf4DFvFZOi8nDIsNC1kgXOesPEBqxvnw8Z8-7C2ujX7tQ-navbPi34AFhuP7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228476852</pqid></control><display><type>article</type><title>Understanding Time-Series Regression Estimators</title><source>ABI/INFORM Global (ProQuest)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><creator>Choudhury, Askar H. ; Hubata, Robert ; St. Louis, Robert D.</creator><creatorcontrib>Choudhury, Askar H. ; Hubata, Robert ; St. Louis, Robert D.</creatorcontrib><description>A large number of methods have been developed for estimating time-series regression parameters. Students and practitioners have a difficult time understanding what these various methods are, let alone picking the most appropriate one for their application. This article explains how these methods are related. A chronology for the development of the various methods is presented, followed by a logical characterization of the methods. An examination of current computational techniques and computing power leads to the conclusion that exact maximum likelihood estimators should be used in almost all cases where regression models have autoregressive, moving average, or mixed autoregressive-moving average error structures.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.1999.10474487</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis Group</publisher><subject>Applied mathematics ; Approximate and exact estimators ; Autoregressive and moving average error models ; Autoregressive moving average ; Cholesky decomposition ; Computational convenience ; Econometrics ; Economic models ; Estimates ; Estimation methods ; Estimators ; Exact sciences and technology ; Generalized least squares and maximum likelihood estimators ; Inference from stochastic processes; time series analysis ; Least squares ; Linear and nonlinear optimization methods ; Mathematics ; Maximum likelihood estimation ; Parameter estimation ; Parametric models ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Simulation ; Software ; Statistical methods ; Statistics ; Stochastic models ; Time series ; Time series models ; Transformations to obtain uncorrelated errors</subject><ispartof>The American statistician, 1999-11, Vol.53 (4), p.342-348</ispartof><rights>Copyright Taylor & Francis Group, LLC 1999</rights><rights>Copyright 1999 American Statistical Association</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Statistical Association Nov 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-fd342e9fc89c7a5060bebbdbcf73abd9efde7e12e5a2bc9dd304e72edd911eee3</citedby><cites>FETCH-LOGICAL-c339t-fd342e9fc89c7a5060bebbdbcf73abd9efde7e12e5a2bc9dd304e72edd911eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/228476852/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/228476852?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,21394,27924,27925,33611,36060,43733,44363,58238,58471,74093,74767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1244907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Choudhury, Askar H.</creatorcontrib><creatorcontrib>Hubata, Robert</creatorcontrib><creatorcontrib>St. Louis, Robert D.</creatorcontrib><title>Understanding Time-Series Regression Estimators</title><title>The American statistician</title><description>A large number of methods have been developed for estimating time-series regression parameters. Students and practitioners have a difficult time understanding what these various methods are, let alone picking the most appropriate one for their application. This article explains how these methods are related. A chronology for the development of the various methods is presented, followed by a logical characterization of the methods. An examination of current computational techniques and computing power leads to the conclusion that exact maximum likelihood estimators should be used in almost all cases where regression models have autoregressive, moving average, or mixed autoregressive-moving average error structures.</description><subject>Applied mathematics</subject><subject>Approximate and exact estimators</subject><subject>Autoregressive and moving average error models</subject><subject>Autoregressive moving average</subject><subject>Cholesky decomposition</subject><subject>Computational convenience</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Generalized least squares and maximum likelihood estimators</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Least squares</subject><subject>Linear and nonlinear optimization methods</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>Time series models</subject><subject>Transformations to obtain uncorrelated errors</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNqFkE1rAjEURUNpodb2LxRpux3N10ySpYj9AKHQ6jpkJi8yohObjBT_fTOo1E3p6pHHuTfJQeie4CHBEo8wxowwnA-JUiqtuOBcigvUIzkTGRWMXKJeB2UddY1uYlylIxYF7aHRorEQYmsaWzfLwbzeQPYJoYY4-IBlgBhr3wymsa03pvUh3qIrZ9YR7o6zjxbP0_nkNZu9v7xNxrOsYky1mbOMU1CukqoSJscFLqEsbVk5wUxpFTgLAgiF3NCyUtYyzEFQsFYRAgCsjx4Ovdvgv3YQW73yu9CkKzWlkotC5jRBj39BRORYcsYLmajiQFXBxxjA6W1Ivwl7TbDuDOqTQd0Z1CeDKfh0rDexMmsXTFPV8TdNOVf4DFvFZOi8nDIsNC1kgXOesPEBqxvnw8Z8-7C2ujX7tQ-navbPi34AFhuP7w</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Choudhury, Askar H.</creator><creator>Hubata, Robert</creator><creator>St. Louis, Robert D.</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JTYFY</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88F</scope><scope>88I</scope><scope>88J</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0T</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19991101</creationdate><title>Understanding Time-Series Regression Estimators</title><author>Choudhury, Askar H. ; Hubata, Robert ; St. Louis, Robert D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-fd342e9fc89c7a5060bebbdbcf73abd9efde7e12e5a2bc9dd304e72edd911eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied mathematics</topic><topic>Approximate and exact estimators</topic><topic>Autoregressive and moving average error models</topic><topic>Autoregressive moving average</topic><topic>Cholesky decomposition</topic><topic>Computational convenience</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Generalized least squares and maximum likelihood estimators</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Least squares</topic><topic>Linear and nonlinear optimization methods</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>Time series models</topic><topic>Transformations to obtain uncorrelated errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhury, Askar H.</creatorcontrib><creatorcontrib>Hubata, Robert</creatorcontrib><creatorcontrib>St. Louis, Robert D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 37</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Family Health Database (Proquest)</collection><collection>ProQuest Healthcare Administration Database</collection><collection>ProQuest Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Social Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhury, Askar H.</au><au>Hubata, Robert</au><au>St. Louis, Robert D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Time-Series Regression Estimators</atitle><jtitle>The American statistician</jtitle><date>1999-11-01</date><risdate>1999</risdate><volume>53</volume><issue>4</issue><spage>342</spage><epage>348</epage><pages>342-348</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>A large number of methods have been developed for estimating time-series regression parameters. Students and practitioners have a difficult time understanding what these various methods are, let alone picking the most appropriate one for their application. This article explains how these methods are related. A chronology for the development of the various methods is presented, followed by a logical characterization of the methods. An examination of current computational techniques and computing power leads to the conclusion that exact maximum likelihood estimators should be used in almost all cases where regression models have autoregressive, moving average, or mixed autoregressive-moving average error structures.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00031305.1999.10474487</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-1305 |
ispartof | The American statistician, 1999-11, Vol.53 (4), p.342-348 |
issn | 0003-1305 1537-2731 |
language | eng |
recordid | cdi_jstor_primary_10_2307_2686054 |
source | ABI/INFORM Global (ProQuest); JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection; Social Science Premium Collection (Proquest) (PQ_SDU_P3) |
subjects | Applied mathematics Approximate and exact estimators Autoregressive and moving average error models Autoregressive moving average Cholesky decomposition Computational convenience Econometrics Economic models Estimates Estimation methods Estimators Exact sciences and technology Generalized least squares and maximum likelihood estimators Inference from stochastic processes time series analysis Least squares Linear and nonlinear optimization methods Mathematics Maximum likelihood estimation Parameter estimation Parametric models Probability and statistics Regression analysis Sciences and techniques of general use Simulation Software Statistical methods Statistics Stochastic models Time series Time series models Transformations to obtain uncorrelated errors |
title | Understanding Time-Series Regression Estimators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Time-Series%20Regression%20Estimators&rft.jtitle=The%20American%20statistician&rft.au=Choudhury,%20Askar%20H.&rft.date=1999-11-01&rft.volume=53&rft.issue=4&rft.spage=342&rft.epage=348&rft.pages=342-348&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1080/00031305.1999.10474487&rft_dat=%3Cjstor_proqu%3E2686054%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-fd342e9fc89c7a5060bebbdbcf73abd9efde7e12e5a2bc9dd304e72edd911eee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=228476852&rft_id=info:pmid/&rft_jstor_id=2686054&rfr_iscdi=true |