Loading…

In vitro Evolution of a T Cell Receptor with High Affinity for Peptide/MHC

T cell receptors (TCRs) exhibit genetic and structural diversity similar to antibodies, but they have binding affinities that are several orders of magnitude lower. It has been suggested that TCRs undergo selection in vivo to maintain lower affinities. Here, we show that there is not an inherent gen...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2000-05, Vol.97 (10), p.5387-5392
Main Authors: Holler, Phillip D., Holman, Philmore O., Shusta, Eric V., O'Herrin, Sean, Wittrup, K. Dane, Kranz, David M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:T cell receptors (TCRs) exhibit genetic and structural diversity similar to antibodies, but they have binding affinities that are several orders of magnitude lower. It has been suggested that TCRs undergo selection in vivo to maintain lower affinities. Here, we show that there is not an inherent genetic or structural limitation on higher affinity. Higher-affinity TCR variants were generated in the absence of in vivo selective pressures by using yeast display and selection from a library of Vα CDR3 mutants. Selected mutants had greater than 100-fold higher affinity (KD≈ 9 nM) for the peptide/MHC ligand while retaining a high degree of peptide specificity. Among the high-affinity TCR mutants, a strong preference was found for CDR3α that contained Pro or Gly residues. Finally, unlike the wild-type TCR, a soluble monomeric form of a high-affinity TCR was capable of directly detecting peptide/MHC complexes on antigen-presenting cells. These findings prove that affinity maturation of TCRs is possible and suggest a strategy for engineering TCRs that can be used in targeting specific peptide/MHC complexes for diagnostic and therapeutic purposes.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.080078297