Loading…
Eliciting Factor Importance in a Designed Experiment
Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise com...
Saved in:
Published in: | Technometrics 2001-05, Vol.43 (2), p.133-146 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403 |
container_end_page | 146 |
container_issue | 2 |
container_start_page | 133 |
container_title | Technometrics |
container_volume | 43 |
creator | Grimshaw, Scott D Collings, Bruce J Larsen, Wayne A Hurt, Carolyn R |
description | Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise comparisons to elicit an expert's opinion and form a well-defined, coherent prior. The prior probability that a factor is active is modeled as a "preference" in the Bradley-Terry linear model for pairwise comparisons. This article provides suggested schedules that minimize the number of comparisons offered to the expert based on the expression of a comparison schedule as a graph theory problem. Examples demonstrate that an expert's knowledge can be obtained to adequate precision for the Bayes analysis of screening designs by asking a few simple questions. |
doi_str_mv | 10.1198/004017001750386251 |
format | article |
fullrecord | <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_1271027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1271027</jstor_id><sourcerecordid>1271027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWFf_gHhYvK_mc7M9eJDaaqHgRc8hzUdJ2SZrkqL996as4EHwMMxhnnfmnReAawTvEJp29xBSiDgsxSDpWszQCZggRniDOSanYHIEmkK05-AipW0hCe74BNB575TLzm_qhVQ5xHq5G0LM0itTO1_L-skkt_FG1_OvwUS3Mz5fgjMr-2SufnoF3hfzt9lLs3p9Xs4eV40ilOdGrzG2yMBWyWnHmURW2bbY1dJYbaEmZo3kGmHbWcyJabUlBDFup4waRikkFbgd9w4xfOxNymIb9tGXkwIj0naY4iOER0jFkFI0VgzFpYwHgaA4hiP-hlNEN6Nom8rPvwrMESxeKvAwjp23Ie7kZ4i9Flke-hBtLNm4JMg_678BmVtyIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213682420</pqid></control><display><type>article</type><title>Eliciting Factor Importance in a Designed Experiment</title><source>ABI/INFORM Global (ProQuest)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Grimshaw, Scott D ; Collings, Bruce J ; Larsen, Wayne A ; Hurt, Carolyn R</creator><creatorcontrib>Grimshaw, Scott D ; Collings, Bruce J ; Larsen, Wayne A ; Hurt, Carolyn R</creatorcontrib><description>Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise comparisons to elicit an expert's opinion and form a well-defined, coherent prior. The prior probability that a factor is active is modeled as a "preference" in the Bradley-Terry linear model for pairwise comparisons. This article provides suggested schedules that minimize the number of comparisons offered to the expert based on the expression of a comparison schedule as a graph theory problem. Examples demonstrate that an expert's knowledge can be obtained to adequate precision for the Bayes analysis of screening designs by asking a few simple questions.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1198/004017001750386251</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Bayesian analysis ; Brainstorming ; Design ; Design analysis ; Design engineering ; Engineers ; Experiment design ; Graph theory ; Graphics ; Graphs ; Guns ; Pairwise comparisons ; Pigments ; Ranking ; Refueling ; Schedules ; Screening designs ; Software</subject><ispartof>Technometrics, 2001-05, Vol.43 (2), p.133-146</ispartof><rights>American Statistical Association and the American Society for Quality 2001</rights><rights>Copyright 2001 The American Statistical Association and the American Society for Quality</rights><rights>Copyright American Statistical Association May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403</citedby><cites>FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213682420/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213682420?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,58238,58471,74895</link.rule.ids></links><search><creatorcontrib>Grimshaw, Scott D</creatorcontrib><creatorcontrib>Collings, Bruce J</creatorcontrib><creatorcontrib>Larsen, Wayne A</creatorcontrib><creatorcontrib>Hurt, Carolyn R</creatorcontrib><title>Eliciting Factor Importance in a Designed Experiment</title><title>Technometrics</title><description>Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise comparisons to elicit an expert's opinion and form a well-defined, coherent prior. The prior probability that a factor is active is modeled as a "preference" in the Bradley-Terry linear model for pairwise comparisons. This article provides suggested schedules that minimize the number of comparisons offered to the expert based on the expression of a comparison schedule as a graph theory problem. Examples demonstrate that an expert's knowledge can be obtained to adequate precision for the Bayes analysis of screening designs by asking a few simple questions.</description><subject>Bayesian analysis</subject><subject>Brainstorming</subject><subject>Design</subject><subject>Design analysis</subject><subject>Design engineering</subject><subject>Engineers</subject><subject>Experiment design</subject><subject>Graph theory</subject><subject>Graphics</subject><subject>Graphs</subject><subject>Guns</subject><subject>Pairwise comparisons</subject><subject>Pigments</subject><subject>Ranking</subject><subject>Refueling</subject><subject>Schedules</subject><subject>Screening designs</subject><subject>Software</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE1LAzEQhoMoWFf_gHhYvK_mc7M9eJDaaqHgRc8hzUdJ2SZrkqL996as4EHwMMxhnnfmnReAawTvEJp29xBSiDgsxSDpWszQCZggRniDOSanYHIEmkK05-AipW0hCe74BNB575TLzm_qhVQ5xHq5G0LM0itTO1_L-skkt_FG1_OvwUS3Mz5fgjMr-2SufnoF3hfzt9lLs3p9Xs4eV40ilOdGrzG2yMBWyWnHmURW2bbY1dJYbaEmZo3kGmHbWcyJabUlBDFup4waRikkFbgd9w4xfOxNymIb9tGXkwIj0naY4iOER0jFkFI0VgzFpYwHgaA4hiP-hlNEN6Nom8rPvwrMESxeKvAwjp23Ie7kZ4i9Flke-hBtLNm4JMg_678BmVtyIQ</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Grimshaw, Scott D</creator><creator>Collings, Bruce J</creator><creator>Larsen, Wayne A</creator><creator>Hurt, Carolyn R</creator><general>Taylor & Francis</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20010501</creationdate><title>Eliciting Factor Importance in a Designed Experiment</title><author>Grimshaw, Scott D ; Collings, Bruce J ; Larsen, Wayne A ; Hurt, Carolyn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bayesian analysis</topic><topic>Brainstorming</topic><topic>Design</topic><topic>Design analysis</topic><topic>Design engineering</topic><topic>Engineers</topic><topic>Experiment design</topic><topic>Graph theory</topic><topic>Graphics</topic><topic>Graphs</topic><topic>Guns</topic><topic>Pairwise comparisons</topic><topic>Pigments</topic><topic>Ranking</topic><topic>Refueling</topic><topic>Schedules</topic><topic>Screening designs</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimshaw, Scott D</creatorcontrib><creatorcontrib>Collings, Bruce J</creatorcontrib><creatorcontrib>Larsen, Wayne A</creatorcontrib><creatorcontrib>Hurt, Carolyn R</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimshaw, Scott D</au><au>Collings, Bruce J</au><au>Larsen, Wayne A</au><au>Hurt, Carolyn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eliciting Factor Importance in a Designed Experiment</atitle><jtitle>Technometrics</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>43</volume><issue>2</issue><spage>133</spage><epage>146</epage><pages>133-146</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise comparisons to elicit an expert's opinion and form a well-defined, coherent prior. The prior probability that a factor is active is modeled as a "preference" in the Bradley-Terry linear model for pairwise comparisons. This article provides suggested schedules that minimize the number of comparisons offered to the expert based on the expression of a comparison schedule as a graph theory problem. Examples demonstrate that an expert's knowledge can be obtained to adequate precision for the Bayes analysis of screening designs by asking a few simple questions.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1198/004017001750386251</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 2001-05, Vol.43 (2), p.133-146 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_jstor_primary_1271027 |
source | ABI/INFORM Global (ProQuest); JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection |
subjects | Bayesian analysis Brainstorming Design Design analysis Design engineering Engineers Experiment design Graph theory Graphics Graphs Guns Pairwise comparisons Pigments Ranking Refueling Schedules Screening designs Software |
title | Eliciting Factor Importance in a Designed Experiment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eliciting%20Factor%20Importance%20in%20a%20Designed%20Experiment&rft.jtitle=Technometrics&rft.au=Grimshaw,%20Scott%20D&rft.date=2001-05-01&rft.volume=43&rft.issue=2&rft.spage=133&rft.epage=146&rft.pages=133-146&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1198/004017001750386251&rft_dat=%3Cjstor_infor%3E1271027%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213682420&rft_id=info:pmid/&rft_jstor_id=1271027&rfr_iscdi=true |