Loading…

Eliciting Factor Importance in a Designed Experiment

Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise com...

Full description

Saved in:
Bibliographic Details
Published in:Technometrics 2001-05, Vol.43 (2), p.133-146
Main Authors: Grimshaw, Scott D, Collings, Bruce J, Larsen, Wayne A, Hurt, Carolyn R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403
cites cdi_FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403
container_end_page 146
container_issue 2
container_start_page 133
container_title Technometrics
container_volume 43
creator Grimshaw, Scott D
Collings, Bruce J
Larsen, Wayne A
Hurt, Carolyn R
description Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise comparisons to elicit an expert's opinion and form a well-defined, coherent prior. The prior probability that a factor is active is modeled as a "preference" in the Bradley-Terry linear model for pairwise comparisons. This article provides suggested schedules that minimize the number of comparisons offered to the expert based on the expression of a comparison schedule as a graph theory problem. Examples demonstrate that an expert's knowledge can be obtained to adequate precision for the Bayes analysis of screening designs by asking a few simple questions.
doi_str_mv 10.1198/004017001750386251
format article
fullrecord <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_1271027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1271027</jstor_id><sourcerecordid>1271027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWFf_gHhYvK_mc7M9eJDaaqHgRc8hzUdJ2SZrkqL996as4EHwMMxhnnfmnReAawTvEJp29xBSiDgsxSDpWszQCZggRniDOSanYHIEmkK05-AipW0hCe74BNB575TLzm_qhVQ5xHq5G0LM0itTO1_L-skkt_FG1_OvwUS3Mz5fgjMr-2SufnoF3hfzt9lLs3p9Xs4eV40ilOdGrzG2yMBWyWnHmURW2bbY1dJYbaEmZo3kGmHbWcyJabUlBDFup4waRikkFbgd9w4xfOxNymIb9tGXkwIj0naY4iOER0jFkFI0VgzFpYwHgaA4hiP-hlNEN6Nom8rPvwrMESxeKvAwjp23Ie7kZ4i9Flke-hBtLNm4JMg_678BmVtyIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213682420</pqid></control><display><type>article</type><title>Eliciting Factor Importance in a Designed Experiment</title><source>ABI/INFORM Global (ProQuest)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Grimshaw, Scott D ; Collings, Bruce J ; Larsen, Wayne A ; Hurt, Carolyn R</creator><creatorcontrib>Grimshaw, Scott D ; Collings, Bruce J ; Larsen, Wayne A ; Hurt, Carolyn R</creatorcontrib><description>Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise comparisons to elicit an expert's opinion and form a well-defined, coherent prior. The prior probability that a factor is active is modeled as a "preference" in the Bradley-Terry linear model for pairwise comparisons. This article provides suggested schedules that minimize the number of comparisons offered to the expert based on the expression of a comparison schedule as a graph theory problem. Examples demonstrate that an expert's knowledge can be obtained to adequate precision for the Bayes analysis of screening designs by asking a few simple questions.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1198/004017001750386251</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Bayesian analysis ; Brainstorming ; Design ; Design analysis ; Design engineering ; Engineers ; Experiment design ; Graph theory ; Graphics ; Graphs ; Guns ; Pairwise comparisons ; Pigments ; Ranking ; Refueling ; Schedules ; Screening designs ; Software</subject><ispartof>Technometrics, 2001-05, Vol.43 (2), p.133-146</ispartof><rights>American Statistical Association and the American Society for Quality 2001</rights><rights>Copyright 2001 The American Statistical Association and the American Society for Quality</rights><rights>Copyright American Statistical Association May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403</citedby><cites>FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/213682420/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/213682420?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,58238,58471,74895</link.rule.ids></links><search><creatorcontrib>Grimshaw, Scott D</creatorcontrib><creatorcontrib>Collings, Bruce J</creatorcontrib><creatorcontrib>Larsen, Wayne A</creatorcontrib><creatorcontrib>Hurt, Carolyn R</creatorcontrib><title>Eliciting Factor Importance in a Designed Experiment</title><title>Technometrics</title><description>Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise comparisons to elicit an expert's opinion and form a well-defined, coherent prior. The prior probability that a factor is active is modeled as a "preference" in the Bradley-Terry linear model for pairwise comparisons. This article provides suggested schedules that minimize the number of comparisons offered to the expert based on the expression of a comparison schedule as a graph theory problem. Examples demonstrate that an expert's knowledge can be obtained to adequate precision for the Bayes analysis of screening designs by asking a few simple questions.</description><subject>Bayesian analysis</subject><subject>Brainstorming</subject><subject>Design</subject><subject>Design analysis</subject><subject>Design engineering</subject><subject>Engineers</subject><subject>Experiment design</subject><subject>Graph theory</subject><subject>Graphics</subject><subject>Graphs</subject><subject>Guns</subject><subject>Pairwise comparisons</subject><subject>Pigments</subject><subject>Ranking</subject><subject>Refueling</subject><subject>Schedules</subject><subject>Screening designs</subject><subject>Software</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE1LAzEQhoMoWFf_gHhYvK_mc7M9eJDaaqHgRc8hzUdJ2SZrkqL996as4EHwMMxhnnfmnReAawTvEJp29xBSiDgsxSDpWszQCZggRniDOSanYHIEmkK05-AipW0hCe74BNB575TLzm_qhVQ5xHq5G0LM0itTO1_L-skkt_FG1_OvwUS3Mz5fgjMr-2SufnoF3hfzt9lLs3p9Xs4eV40ilOdGrzG2yMBWyWnHmURW2bbY1dJYbaEmZo3kGmHbWcyJabUlBDFup4waRikkFbgd9w4xfOxNymIb9tGXkwIj0naY4iOER0jFkFI0VgzFpYwHgaA4hiP-hlNEN6Nom8rPvwrMESxeKvAwjp23Ie7kZ4i9Flke-hBtLNm4JMg_678BmVtyIQ</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Grimshaw, Scott D</creator><creator>Collings, Bruce J</creator><creator>Larsen, Wayne A</creator><creator>Hurt, Carolyn R</creator><general>Taylor &amp; Francis</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20010501</creationdate><title>Eliciting Factor Importance in a Designed Experiment</title><author>Grimshaw, Scott D ; Collings, Bruce J ; Larsen, Wayne A ; Hurt, Carolyn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bayesian analysis</topic><topic>Brainstorming</topic><topic>Design</topic><topic>Design analysis</topic><topic>Design engineering</topic><topic>Engineers</topic><topic>Experiment design</topic><topic>Graph theory</topic><topic>Graphics</topic><topic>Graphs</topic><topic>Guns</topic><topic>Pairwise comparisons</topic><topic>Pigments</topic><topic>Ranking</topic><topic>Refueling</topic><topic>Schedules</topic><topic>Screening designs</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimshaw, Scott D</creatorcontrib><creatorcontrib>Collings, Bruce J</creatorcontrib><creatorcontrib>Larsen, Wayne A</creatorcontrib><creatorcontrib>Hurt, Carolyn R</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimshaw, Scott D</au><au>Collings, Bruce J</au><au>Larsen, Wayne A</au><au>Hurt, Carolyn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eliciting Factor Importance in a Designed Experiment</atitle><jtitle>Technometrics</jtitle><date>2001-05-01</date><risdate>2001</risdate><volume>43</volume><issue>2</issue><spage>133</spage><epage>146</epage><pages>133-146</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>Recently, there has been great interest in the Bayes model for analyzing confounded designs. This model suggests that only a few of the main effects and interactions are "active" and estimates the posterior probability that a given factor is active. This article proposes using pairwise comparisons to elicit an expert's opinion and form a well-defined, coherent prior. The prior probability that a factor is active is modeled as a "preference" in the Bradley-Terry linear model for pairwise comparisons. This article provides suggested schedules that minimize the number of comparisons offered to the expert based on the expression of a comparison schedule as a graph theory problem. Examples demonstrate that an expert's knowledge can be obtained to adequate precision for the Bayes analysis of screening designs by asking a few simple questions.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/004017001750386251</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 2001-05, Vol.43 (2), p.133-146
issn 0040-1706
1537-2723
language eng
recordid cdi_jstor_primary_1271027
source ABI/INFORM Global (ProQuest); JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection
subjects Bayesian analysis
Brainstorming
Design
Design analysis
Design engineering
Engineers
Experiment design
Graph theory
Graphics
Graphs
Guns
Pairwise comparisons
Pigments
Ranking
Refueling
Schedules
Screening designs
Software
title Eliciting Factor Importance in a Designed Experiment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eliciting%20Factor%20Importance%20in%20a%20Designed%20Experiment&rft.jtitle=Technometrics&rft.au=Grimshaw,%20Scott%20D&rft.date=2001-05-01&rft.volume=43&rft.issue=2&rft.spage=133&rft.epage=146&rft.pages=133-146&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1198/004017001750386251&rft_dat=%3Cjstor_infor%3E1271027%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-db22f1e06ca9875a1fcf6119daefdf0d3eb1ab12f8f273e6df33157f954e54403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213682420&rft_id=info:pmid/&rft_jstor_id=1271027&rfr_iscdi=true