Loading…
Triangular Factorization and Generalized Upper Bounding Techniques
We develop a compact inverse method for linear programming problems having block triangular or sparse constraint matrices. Special cases of the method are, for example, the generalized upper bounding technique and its extensions. For these methods we show how a triangular factorization can be used f...
Saved in:
Published in: | Operations research 1977-01, Vol.25 (1), p.89-99 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-9b463b8a900308cd8cb59709ea1f5d59ce97bb71279a195ff0e78870a940e0083 |
---|---|
cites | |
container_end_page | 99 |
container_issue | 1 |
container_start_page | 89 |
container_title | Operations research |
container_volume | 25 |
creator | Kallio, Markku Porteus, Evan L |
description | We develop a compact inverse method for linear programming problems having block triangular or sparse constraint matrices. Special cases of the method are, for example, the generalized upper bounding technique and its extensions. For these methods we show how a triangular factorization can be used for the working basis and block bases. In this case (and even if the constraint matrix has no special structure) our method becomes a variation of the revised simplex method using a single triangular factorization of the basis. However, the updating procedure of the triangular factors differs from existing ones in a way that implies that certain structures are exploited naturally. |
doi_str_mv | 10.1287/opre.25.1.89 |
format | article |
fullrecord | <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_169550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>169550</jstor_id><sourcerecordid>169550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-9b463b8a900308cd8cb59709ea1f5d59ce97bb71279a195ff0e78870a940e0083</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwsbFEICZIOCdxbI-0ooBUiaWV2CwncVpXrRPsRIj-9TgKHxNiuuH97r27h9A5hgjHjN7VjVVRTCIcMX6ARpjEWUjSLDlEI4AEwiRLX4_RiXMbAOAkIyM0WVgtzarbShvMZNHWVu9lq2sTSFMGj8ooK7d6r8pg2TTKBpO6M6U2q2ChirXRb51yp-ioklunzr7mGC1nD4vpUzh_eXye3s_DIoGsDXnuL8mZ5P0prChZkRNOgSuJK1ISXihO85zimHKJOakqUJQxCpKnoABYMkaXg29j6z63FZu6s8ZHihhzTFL_noeu_oJw4oNpllLw1O1AFbZ2zqpKNFbvpP0QGERfpeirFDERWDDu8YsB3zhf0C-bcUJ6s5tB1aaq7c7953U90Gu9Wr9rr3yv9Zj74T4BpwSLTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303076470</pqid></control><display><type>article</type><title>Triangular Factorization and Generalized Upper Bounding Techniques</title><source>Informs</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Kallio, Markku ; Porteus, Evan L</creator><creatorcontrib>Kallio, Markku ; Porteus, Evan L</creatorcontrib><description>We develop a compact inverse method for linear programming problems having block triangular or sparse constraint matrices. Special cases of the method are, for example, the generalized upper bounding technique and its extensions. For these methods we show how a triangular factorization can be used for the working basis and block bases. In this case (and even if the constraint matrix has no special structure) our method becomes a variation of the revised simplex method using a single triangular factorization of the basis. However, the updating procedure of the triangular factors differs from existing ones in a way that implies that certain structures are exploited naturally.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.25.1.89</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Baltimore, Md: INFORMS</publisher><subject>Factorization ; Linear programming ; Mathematical procedures ; Research universities ; Simplex method ; Staircases ; Studies</subject><ispartof>Operations research, 1977-01, Vol.25 (1), p.89-99</ispartof><rights>Copyright 1977 The Operations Research Society of America</rights><rights>Copyright Institute for Operations Research and the Management Sciences JAN./FEB. 1977</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-9b463b8a900308cd8cb59709ea1f5d59ce97bb71279a195ff0e78870a940e0083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/169550$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.25.1.89$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,58238,58471,62616</link.rule.ids></links><search><creatorcontrib>Kallio, Markku</creatorcontrib><creatorcontrib>Porteus, Evan L</creatorcontrib><title>Triangular Factorization and Generalized Upper Bounding Techniques</title><title>Operations research</title><description>We develop a compact inverse method for linear programming problems having block triangular or sparse constraint matrices. Special cases of the method are, for example, the generalized upper bounding technique and its extensions. For these methods we show how a triangular factorization can be used for the working basis and block bases. In this case (and even if the constraint matrix has no special structure) our method becomes a variation of the revised simplex method using a single triangular factorization of the basis. However, the updating procedure of the triangular factors differs from existing ones in a way that implies that certain structures are exploited naturally.</description><subject>Factorization</subject><subject>Linear programming</subject><subject>Mathematical procedures</subject><subject>Research universities</subject><subject>Simplex method</subject><subject>Staircases</subject><subject>Studies</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwsbFEICZIOCdxbI-0ooBUiaWV2CwncVpXrRPsRIj-9TgKHxNiuuH97r27h9A5hgjHjN7VjVVRTCIcMX6ARpjEWUjSLDlEI4AEwiRLX4_RiXMbAOAkIyM0WVgtzarbShvMZNHWVu9lq2sTSFMGj8ooK7d6r8pg2TTKBpO6M6U2q2ChirXRb51yp-ioklunzr7mGC1nD4vpUzh_eXye3s_DIoGsDXnuL8mZ5P0prChZkRNOgSuJK1ISXihO85zimHKJOakqUJQxCpKnoABYMkaXg29j6z63FZu6s8ZHihhzTFL_noeu_oJw4oNpllLw1O1AFbZ2zqpKNFbvpP0QGERfpeirFDERWDDu8YsB3zhf0C-bcUJ6s5tB1aaq7c7953U90Gu9Wr9rr3yv9Zj74T4BpwSLTg</recordid><startdate>19770101</startdate><enddate>19770101</enddate><creator>Kallio, Markku</creator><creator>Porteus, Evan L</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>JQ2</scope><scope>K9.</scope></search><sort><creationdate>19770101</creationdate><title>Triangular Factorization and Generalized Upper Bounding Techniques</title><author>Kallio, Markku ; Porteus, Evan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-9b463b8a900308cd8cb59709ea1f5d59ce97bb71279a195ff0e78870a940e0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Factorization</topic><topic>Linear programming</topic><topic>Mathematical procedures</topic><topic>Research universities</topic><topic>Simplex method</topic><topic>Staircases</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kallio, Markku</creatorcontrib><creatorcontrib>Porteus, Evan L</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kallio, Markku</au><au>Porteus, Evan L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triangular Factorization and Generalized Upper Bounding Techniques</atitle><jtitle>Operations research</jtitle><date>1977-01-01</date><risdate>1977</risdate><volume>25</volume><issue>1</issue><spage>89</spage><epage>99</epage><pages>89-99</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>We develop a compact inverse method for linear programming problems having block triangular or sparse constraint matrices. Special cases of the method are, for example, the generalized upper bounding technique and its extensions. For these methods we show how a triangular factorization can be used for the working basis and block bases. In this case (and even if the constraint matrix has no special structure) our method becomes a variation of the revised simplex method using a single triangular factorization of the basis. However, the updating procedure of the triangular factors differs from existing ones in a way that implies that certain structures are exploited naturally.</abstract><cop>Baltimore, Md</cop><pub>INFORMS</pub><doi>10.1287/opre.25.1.89</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 1977-01, Vol.25 (1), p.89-99 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_jstor_primary_169550 |
source | Informs; JSTOR Archival Journals and Primary Sources Collection; BSC - Ebsco (Business Source Ultimate) |
subjects | Factorization Linear programming Mathematical procedures Research universities Simplex method Staircases Studies |
title | Triangular Factorization and Generalized Upper Bounding Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triangular%20Factorization%20and%20Generalized%20Upper%20Bounding%20Techniques&rft.jtitle=Operations%20research&rft.au=Kallio,%20Markku&rft.date=1977-01-01&rft.volume=25&rft.issue=1&rft.spage=89&rft.epage=99&rft.pages=89-99&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.25.1.89&rft_dat=%3Cjstor_infor%3E169550%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-9b463b8a900308cd8cb59709ea1f5d59ce97bb71279a195ff0e78870a940e0083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1303076470&rft_id=info:pmid/&rft_jstor_id=169550&rfr_iscdi=true |