Loading…

A New Estimator of the Variance Based on Minimizing Mean Squared Error

In 2005, Yatracos constructed the estimator S 2 2 = c 2 S 2 , c 2 = (n + 2)(n − 1)[n(n + 1)] − 1 , of the variance, which has smaller mean squared error (MSE) than the unbiased estimator S 2 . In this work, the estimator S 2 1 = c 1 S 2 , c 1 = n(n − 1)[n(n − 1) + 2] − 1 , is constructed and is show...

Full description

Saved in:
Bibliographic Details
Published in:The American statistician 2012-11, Vol.66 (4), p.234-236
Main Author: Kourouklis, Stavros
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-788d29faeeca957ca6e818079e8e9932aac17bffe21014f97b8c00bc4fab87393
cites cdi_FETCH-LOGICAL-c357t-788d29faeeca957ca6e818079e8e9932aac17bffe21014f97b8c00bc4fab87393
container_end_page 236
container_issue 4
container_start_page 234
container_title The American statistician
container_volume 66
creator Kourouklis, Stavros
description In 2005, Yatracos constructed the estimator S 2 2 = c 2 S 2 , c 2 = (n + 2)(n − 1)[n(n + 1)] − 1 , of the variance, which has smaller mean squared error (MSE) than the unbiased estimator S 2 . In this work, the estimator S 2 1 = c 1 S 2 , c 1 = n(n − 1)[n(n − 1) + 2] − 1 , is constructed and is shown to have the following properties: (a) it has smaller MSE than S 2 2 , and (b) it cannot be improved in terms of MSE by an estimator of the form cS 2 , c > 0. The method of construction is based on Stein's classical idea brought forward in 1964, is very simple, and may be taught even in an undergraduate class. Also, all the estimators of the form cS 2 , c > 0, with smaller MSE than S 2 as well as all those that have the property (b) are found. In contrast to S 2 , the method of moments estimator is among the latter estimators.
doi_str_mv 10.1080/00031305.2012.735209
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_23339501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23339501</jstor_id><sourcerecordid>23339501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-788d29faeeca957ca6e818079e8e9932aac17bffe21014f97b8c00bc4fab87393</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfQCHgeesk2W02J6mlVaHVg3-uIZsmmtJu2mRLqZ_eLKsePQ3De28e80PoksCAQAk3AMAIg2JAgdABZwUFcYR6pGA8o5yRY9RrLVnrOUVnMS7TCnxIe2g6wk9mjyexcWvV-IC9xc2nwe8qOFVrg-9UNAvsazx3tVu7L1d_4LlRNX7Z7lRI0iQEH87RiVWraC5-Zh-9TSev44ds9nz_OB7NMs0K3mS8LBdUWGWMVqLgWg1NSUrgwpRGCEaV0oRX1hpKgORW8KrUAJXOrapKzgTro-vu7ib47c7ERi79LtSpUhI6LIbAKcmTK-9cOvgYg7FyE9J74SAJyJaY_CUmW2KyI5ZiV11sGROJvwxljIkCSNJvO93V1oe12vuwWshGHVY-2JBouSjZvw3fivh55Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1265607214</pqid></control><display><type>article</type><title>A New Estimator of the Variance Based on Minimizing Mean Squared Error</title><source>Taylor and Francis Science and Technology Collection</source><source>JSTOR Archival Journals</source><creator>Kourouklis, Stavros</creator><creatorcontrib>Kourouklis, Stavros</creatorcontrib><description>In 2005, Yatracos constructed the estimator S 2 2 = c 2 S 2 , c 2 = (n + 2)(n − 1)[n(n + 1)] − 1 , of the variance, which has smaller mean squared error (MSE) than the unbiased estimator S 2 . In this work, the estimator S 2 1 = c 1 S 2 , c 1 = n(n − 1)[n(n − 1) + 2] − 1 , is constructed and is shown to have the following properties: (a) it has smaller MSE than S 2 2 , and (b) it cannot be improved in terms of MSE by an estimator of the form cS 2 , c &gt; 0. The method of construction is based on Stein's classical idea brought forward in 1964, is very simple, and may be taught even in an undergraduate class. Also, all the estimators of the form cS 2 , c &gt; 0, with smaller MSE than S 2 as well as all those that have the property (b) are found. In contrast to S 2 , the method of moments estimator is among the latter estimators.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.2012.735209</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis Group</publisher><subject>Admissibility ; Bayes estimators ; Error rates ; Estimates ; Estimation methods ; Estimators ; Estimators for the mean ; Higher education ; Mathematical constants ; Mean square errors ; Method of moments ; Population estimates ; Statistical variance ; Statistics ; Stein's method ; Teacher's Corner ; Unbiased estimators ; Variance estimation</subject><ispartof>The American statistician, 2012-11, Vol.66 (4), p.234-236</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright 2012 American Statistical Association</rights><rights>Copyright Taylor &amp; Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-788d29faeeca957ca6e818079e8e9932aac17bffe21014f97b8c00bc4fab87393</citedby><cites>FETCH-LOGICAL-c357t-788d29faeeca957ca6e818079e8e9932aac17bffe21014f97b8c00bc4fab87393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23339501$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23339501$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Kourouklis, Stavros</creatorcontrib><title>A New Estimator of the Variance Based on Minimizing Mean Squared Error</title><title>The American statistician</title><description>In 2005, Yatracos constructed the estimator S 2 2 = c 2 S 2 , c 2 = (n + 2)(n − 1)[n(n + 1)] − 1 , of the variance, which has smaller mean squared error (MSE) than the unbiased estimator S 2 . In this work, the estimator S 2 1 = c 1 S 2 , c 1 = n(n − 1)[n(n − 1) + 2] − 1 , is constructed and is shown to have the following properties: (a) it has smaller MSE than S 2 2 , and (b) it cannot be improved in terms of MSE by an estimator of the form cS 2 , c &gt; 0. The method of construction is based on Stein's classical idea brought forward in 1964, is very simple, and may be taught even in an undergraduate class. Also, all the estimators of the form cS 2 , c &gt; 0, with smaller MSE than S 2 as well as all those that have the property (b) are found. In contrast to S 2 , the method of moments estimator is among the latter estimators.</description><subject>Admissibility</subject><subject>Bayes estimators</subject><subject>Error rates</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Higher education</subject><subject>Mathematical constants</subject><subject>Mean square errors</subject><subject>Method of moments</subject><subject>Population estimates</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stein's method</subject><subject>Teacher's Corner</subject><subject>Unbiased estimators</subject><subject>Variance estimation</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfQCHgeesk2W02J6mlVaHVg3-uIZsmmtJu2mRLqZ_eLKsePQ3De28e80PoksCAQAk3AMAIg2JAgdABZwUFcYR6pGA8o5yRY9RrLVnrOUVnMS7TCnxIe2g6wk9mjyexcWvV-IC9xc2nwe8qOFVrg-9UNAvsazx3tVu7L1d_4LlRNX7Z7lRI0iQEH87RiVWraC5-Zh-9TSev44ds9nz_OB7NMs0K3mS8LBdUWGWMVqLgWg1NSUrgwpRGCEaV0oRX1hpKgORW8KrUAJXOrapKzgTro-vu7ib47c7ERi79LtSpUhI6LIbAKcmTK-9cOvgYg7FyE9J74SAJyJaY_CUmW2KyI5ZiV11sGROJvwxljIkCSNJvO93V1oe12vuwWshGHVY-2JBouSjZvw3fivh55Q</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Kourouklis, Stavros</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>A New Estimator of the Variance Based on Minimizing Mean Squared Error</title><author>Kourouklis, Stavros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-788d29faeeca957ca6e818079e8e9932aac17bffe21014f97b8c00bc4fab87393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Admissibility</topic><topic>Bayes estimators</topic><topic>Error rates</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Higher education</topic><topic>Mathematical constants</topic><topic>Mean square errors</topic><topic>Method of moments</topic><topic>Population estimates</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stein's method</topic><topic>Teacher's Corner</topic><topic>Unbiased estimators</topic><topic>Variance estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kourouklis, Stavros</creatorcontrib><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kourouklis, Stavros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Estimator of the Variance Based on Minimizing Mean Squared Error</atitle><jtitle>The American statistician</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>66</volume><issue>4</issue><spage>234</spage><epage>236</epage><pages>234-236</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>In 2005, Yatracos constructed the estimator S 2 2 = c 2 S 2 , c 2 = (n + 2)(n − 1)[n(n + 1)] − 1 , of the variance, which has smaller mean squared error (MSE) than the unbiased estimator S 2 . In this work, the estimator S 2 1 = c 1 S 2 , c 1 = n(n − 1)[n(n − 1) + 2] − 1 , is constructed and is shown to have the following properties: (a) it has smaller MSE than S 2 2 , and (b) it cannot be improved in terms of MSE by an estimator of the form cS 2 , c &gt; 0. The method of construction is based on Stein's classical idea brought forward in 1964, is very simple, and may be taught even in an undergraduate class. Also, all the estimators of the form cS 2 , c &gt; 0, with smaller MSE than S 2 as well as all those that have the property (b) are found. In contrast to S 2 , the method of moments estimator is among the latter estimators.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00031305.2012.735209</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 2012-11, Vol.66 (4), p.234-236
issn 0003-1305
1537-2731
language eng
recordid cdi_jstor_primary_23339501
source Taylor and Francis Science and Technology Collection; JSTOR Archival Journals
subjects Admissibility
Bayes estimators
Error rates
Estimates
Estimation methods
Estimators
Estimators for the mean
Higher education
Mathematical constants
Mean square errors
Method of moments
Population estimates
Statistical variance
Statistics
Stein's method
Teacher's Corner
Unbiased estimators
Variance estimation
title A New Estimator of the Variance Based on Minimizing Mean Squared Error
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Estimator%20of%20the%20Variance%20Based%20on%20Minimizing%20Mean%20Squared%20Error&rft.jtitle=The%20American%20statistician&rft.au=Kourouklis,%20Stavros&rft.date=2012-11-01&rft.volume=66&rft.issue=4&rft.spage=234&rft.epage=236&rft.pages=234-236&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1080/00031305.2012.735209&rft_dat=%3Cjstor_proqu%3E23339501%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-788d29faeeca957ca6e818079e8e9932aac17bffe21014f97b8c00bc4fab87393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1265607214&rft_id=info:pmid/&rft_jstor_id=23339501&rfr_iscdi=true