Loading…

Two members of a conserved family of nuclear phosphoproteins are involved in pre-mRNA splicing

Monoclonal antibody 104 recognizes a subset of amphibian nuclear granules (B-snurposomes) and active sites of RNA polymerase II transcription in vertebrates and invertebrates. Monoclonal antibody 104 reacts with a set of nuclear serine- and arginine-rich phosphoproteins (SR family) with strikingly c...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1992-02, Vol.89 (4), p.1301-1304
Main Authors: Mayeda, A. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), Zahler, A.M, Krainer, A.R, Roth, M.B
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monoclonal antibody 104 recognizes a subset of amphibian nuclear granules (B-snurposomes) and active sites of RNA polymerase II transcription in vertebrates and invertebrates. Monoclonal antibody 104 reacts with a set of nuclear serine- and arginine-rich phosphoproteins (SR family) with strikingly conserved apparent molecular masses. The most abundant family members in human (SRp33) and Drosophila (SRp55) cell lines can replace one another as essential splicing factors in a human cell-free system. Each of these polypeptides can functionally replace human SF2, an essential splicing factor that also regulates 5' splice site selection of alternatively spliced pre-mRNAs in vitro. Drosophila SRp55 also functions as an alternative splicing factor in the human cell-free system. Analysis of cloned cDNAs shows that SRp55 and SF2 are highly related and reveals regions of similarity to genetically defined regulators of alternative splicing in Drosophila. These results suggest that the conserved SR family of phosphoproteins, which includes SRp55 and SF2, is involved in constitutive pre-mRNA splicing and in the specificity of alternative splice site selection.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.89.4.1301