Loading…

Human dUTP Pyrophophatase: cDNA Sequence and Potential Biological Importance of the Enzyme

Two functional human dUTP pyrophosphatase (dUTPase; EC 3.6.1.23) cDNAs were isolated from a cDNA expression library by genetic complementation in Escherichia coli. These cDNAs differed in size but exhibited a common overlapping DNA sequence. Contained within this sequence was a single long open read...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1992-09, Vol.89 (17), p.8020-8024
Main Authors: McIntosh, Evan M., Ager, Darlene D., Gadsden, Michael H., Haynes, Robert H.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two functional human dUTP pyrophosphatase (dUTPase; EC 3.6.1.23) cDNAs were isolated from a cDNA expression library by genetic complementation in Escherichia coli. These cDNAs differed in size but exhibited a common overlapping DNA sequence. Contained within this sequence was a single long open reading frame sufficient to encode a polypeptide of 141 amino acids with a calculated molecular mass of 16.6 kDa. The amino acid sequence of this protein exhibits 35% identity with the E. coli dUTPase and 53% identity with the Saccharomyces cerevisiae enzyme. The human dUTPase was found to contain five characteristic amino acid sequence motifs that are common to the dUTPases of E. coli, yeast, and herpesviruses and to dUTPase-like sequences encoded by some retrovirus gag and pol genes. A high degree of amino acid sequence identity (>60%) was also observed between the human dUTPase and the putative pseudoproteases of two poxviruses, indicating that these virus proteins are dUTPases. Northern hybridization analysis reveals that dUTPase is encoded by at least two species of poly(A)+mRNA and possibly a third, smaller species. All of these mRNAs are present in a variety of human tissues but their relative levels vary between tissues. Southern analysis indicates that the dUTPase gene has been conserved to some extent throughout vertebrate evolution; however, the gene may be very large, or its organization somewhat complex in some systems. We suggest that dUTPase may generally perform an essential role in DNA replication and therefore could serve as a target enzyme for the development of chemotherapeutic compounds.
ISSN:0027-8424