Loading…
Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons
The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (7), p.2776-2781 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3 |
container_end_page | 2781 |
container_issue | 7 |
container_start_page | 2776 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Luo, Linjiao Cook, Nathan Venkatachalam, Vivek Martinez-Velazquez, Luis A. Zhang, Xiaodong Calvo, Ana C. Hawk, Josh MacInnis, Bronwyn L. Frank, Michelle Ng, Jia Hong Ray Klein, Mason Gershow, Marc Hammarlund, Marc Goodman, Miriam B. Colón-Ramos, Daniel A. Zhang, Yun Samuel, Aravinthan D. T. |
description | The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under some conditions, the worm migrates up temperature gradients below T ₛ (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward T ₛ to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below T ₛ. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits. |
doi_str_mv | 10.1073/pnas.1315205111 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_23768963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23768963</jstor_id><sourcerecordid>23768963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhSMEotvCmRNgqRcuaT12YjsXpLJQQKrEAXq2nGSy61XWXuykYn8DfxqHLNvCiZMlzzfPbzwvy14AvQAq-eXOmXgBHEpGSwB4lC2AVpCLoqKPswWlTOaqYMVJdhrjhlJalYo-zU5YUZaUU7nIfr6zrQ3YDNY705NhjWHrB_PDRmIdWRp0PqxN3doh3WCPK-NSJZItttYM2JJ6T1obB-uagUR00QebBHwgcQgJWFmMpA32Dt2EJn1ydf3-8M7M74nDMXgXn2VPOtNHfH44z7Lb6w_flp_ymy8fPy-vbvKmZHzIO0AEBqYrWs46hXUHpVKq4pXqgDLosBTSFKJmTLYtA6GaQtZYN1y0HasNP8vezrq7sU5zNOiS1V7vknMT9tobq_-uOLvWK3-necVZBTIJvDkIBP99xDjorY0N9r1x6MeooSyK6e9l8R8opULxUqqEnv-DbvwY0lZ-UyDSYukkeDlTTfAxBuyOvoHqKRN6yoS-z0TqePVw3CP_JwQPgKnzKAegpU5DiAS8nIFNTJu9F-BSqErwVH891zvjtVkFG_XtVzZZpsArYJz_All20wU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501609104</pqid></control><display><type>article</type><title>Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Luo, Linjiao ; Cook, Nathan ; Venkatachalam, Vivek ; Martinez-Velazquez, Luis A. ; Zhang, Xiaodong ; Calvo, Ana C. ; Hawk, Josh ; MacInnis, Bronwyn L. ; Frank, Michelle ; Ng, Jia Hong Ray ; Klein, Mason ; Gershow, Marc ; Hammarlund, Marc ; Goodman, Miriam B. ; Colón-Ramos, Daniel A. ; Zhang, Yun ; Samuel, Aravinthan D. T.</creator><creatorcontrib>Luo, Linjiao ; Cook, Nathan ; Venkatachalam, Vivek ; Martinez-Velazquez, Luis A. ; Zhang, Xiaodong ; Calvo, Ana C. ; Hawk, Josh ; MacInnis, Bronwyn L. ; Frank, Michelle ; Ng, Jia Hong Ray ; Klein, Mason ; Gershow, Marc ; Hammarlund, Marc ; Goodman, Miriam B. ; Colón-Ramos, Daniel A. ; Zhang, Yun ; Samuel, Aravinthan D. T.</creatorcontrib><description>The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under some conditions, the worm migrates up temperature gradients below T ₛ (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward T ₛ to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below T ₛ. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1315205111</identifier><identifier>PMID: 24550307</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aircraft maneuvers ; Animal behavior ; Animals ; Behavioral neuroscience ; Biological Sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - physiology ; Calcium ; Interneurons ; Laser ablation ; Memory ; Memory, Long-Term - physiology ; Models, Neurological ; Movement - physiology ; Navigation ; Nematoda ; Nematodes ; Neurons ; Neurons - physiology ; Retraining ; Temperature ; Temperature gradients ; Thermosensing - physiology ; Trajectories</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2776-2781</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3</citedby><cites>FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23768963$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23768963$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24550307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Linjiao</creatorcontrib><creatorcontrib>Cook, Nathan</creatorcontrib><creatorcontrib>Venkatachalam, Vivek</creatorcontrib><creatorcontrib>Martinez-Velazquez, Luis A.</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Calvo, Ana C.</creatorcontrib><creatorcontrib>Hawk, Josh</creatorcontrib><creatorcontrib>MacInnis, Bronwyn L.</creatorcontrib><creatorcontrib>Frank, Michelle</creatorcontrib><creatorcontrib>Ng, Jia Hong Ray</creatorcontrib><creatorcontrib>Klein, Mason</creatorcontrib><creatorcontrib>Gershow, Marc</creatorcontrib><creatorcontrib>Hammarlund, Marc</creatorcontrib><creatorcontrib>Goodman, Miriam B.</creatorcontrib><creatorcontrib>Colón-Ramos, Daniel A.</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Samuel, Aravinthan D. T.</creatorcontrib><title>Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under some conditions, the worm migrates up temperature gradients below T ₛ (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward T ₛ to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below T ₛ. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.</description><subject>Aircraft maneuvers</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Calcium</subject><subject>Interneurons</subject><subject>Laser ablation</subject><subject>Memory</subject><subject>Memory, Long-Term - physiology</subject><subject>Models, Neurological</subject><subject>Movement - physiology</subject><subject>Navigation</subject><subject>Nematoda</subject><subject>Nematodes</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Retraining</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermosensing - physiology</subject><subject>Trajectories</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkkFv1DAQhSMEotvCmRNgqRcuaT12YjsXpLJQQKrEAXq2nGSy61XWXuykYn8DfxqHLNvCiZMlzzfPbzwvy14AvQAq-eXOmXgBHEpGSwB4lC2AVpCLoqKPswWlTOaqYMVJdhrjhlJalYo-zU5YUZaUU7nIfr6zrQ3YDNY705NhjWHrB_PDRmIdWRp0PqxN3doh3WCPK-NSJZItttYM2JJ6T1obB-uagUR00QebBHwgcQgJWFmMpA32Dt2EJn1ydf3-8M7M74nDMXgXn2VPOtNHfH44z7Lb6w_flp_ymy8fPy-vbvKmZHzIO0AEBqYrWs46hXUHpVKq4pXqgDLosBTSFKJmTLYtA6GaQtZYN1y0HasNP8vezrq7sU5zNOiS1V7vknMT9tobq_-uOLvWK3-necVZBTIJvDkIBP99xDjorY0N9r1x6MeooSyK6e9l8R8opULxUqqEnv-DbvwY0lZ-UyDSYukkeDlTTfAxBuyOvoHqKRN6yoS-z0TqePVw3CP_JwQPgKnzKAegpU5DiAS8nIFNTJu9F-BSqErwVH891zvjtVkFG_XtVzZZpsArYJz_All20wU</recordid><startdate>20140218</startdate><enddate>20140218</enddate><creator>Luo, Linjiao</creator><creator>Cook, Nathan</creator><creator>Venkatachalam, Vivek</creator><creator>Martinez-Velazquez, Luis A.</creator><creator>Zhang, Xiaodong</creator><creator>Calvo, Ana C.</creator><creator>Hawk, Josh</creator><creator>MacInnis, Bronwyn L.</creator><creator>Frank, Michelle</creator><creator>Ng, Jia Hong Ray</creator><creator>Klein, Mason</creator><creator>Gershow, Marc</creator><creator>Hammarlund, Marc</creator><creator>Goodman, Miriam B.</creator><creator>Colón-Ramos, Daniel A.</creator><creator>Zhang, Yun</creator><creator>Samuel, Aravinthan D. T.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140218</creationdate><title>Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons</title><author>Luo, Linjiao ; Cook, Nathan ; Venkatachalam, Vivek ; Martinez-Velazquez, Luis A. ; Zhang, Xiaodong ; Calvo, Ana C. ; Hawk, Josh ; MacInnis, Bronwyn L. ; Frank, Michelle ; Ng, Jia Hong Ray ; Klein, Mason ; Gershow, Marc ; Hammarlund, Marc ; Goodman, Miriam B. ; Colón-Ramos, Daniel A. ; Zhang, Yun ; Samuel, Aravinthan D. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aircraft maneuvers</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Calcium</topic><topic>Interneurons</topic><topic>Laser ablation</topic><topic>Memory</topic><topic>Memory, Long-Term - physiology</topic><topic>Models, Neurological</topic><topic>Movement - physiology</topic><topic>Navigation</topic><topic>Nematoda</topic><topic>Nematodes</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Retraining</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermosensing - physiology</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Linjiao</creatorcontrib><creatorcontrib>Cook, Nathan</creatorcontrib><creatorcontrib>Venkatachalam, Vivek</creatorcontrib><creatorcontrib>Martinez-Velazquez, Luis A.</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Calvo, Ana C.</creatorcontrib><creatorcontrib>Hawk, Josh</creatorcontrib><creatorcontrib>MacInnis, Bronwyn L.</creatorcontrib><creatorcontrib>Frank, Michelle</creatorcontrib><creatorcontrib>Ng, Jia Hong Ray</creatorcontrib><creatorcontrib>Klein, Mason</creatorcontrib><creatorcontrib>Gershow, Marc</creatorcontrib><creatorcontrib>Hammarlund, Marc</creatorcontrib><creatorcontrib>Goodman, Miriam B.</creatorcontrib><creatorcontrib>Colón-Ramos, Daniel A.</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Samuel, Aravinthan D. T.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Linjiao</au><au>Cook, Nathan</au><au>Venkatachalam, Vivek</au><au>Martinez-Velazquez, Luis A.</au><au>Zhang, Xiaodong</au><au>Calvo, Ana C.</au><au>Hawk, Josh</au><au>MacInnis, Bronwyn L.</au><au>Frank, Michelle</au><au>Ng, Jia Hong Ray</au><au>Klein, Mason</au><au>Gershow, Marc</au><au>Hammarlund, Marc</au><au>Goodman, Miriam B.</au><au>Colón-Ramos, Daniel A.</au><au>Zhang, Yun</au><au>Samuel, Aravinthan D. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-18</date><risdate>2014</risdate><volume>111</volume><issue>7</issue><spage>2776</spage><epage>2781</epage><pages>2776-2781</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under some conditions, the worm migrates up temperature gradients below T ₛ (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward T ₛ to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below T ₛ. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24550307</pmid><doi>10.1073/pnas.1315205111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2776-2781 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_23768963 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | Aircraft maneuvers Animal behavior Animals Behavioral neuroscience Biological Sciences Caenorhabditis elegans Caenorhabditis elegans - physiology Calcium Interneurons Laser ablation Memory Memory, Long-Term - physiology Models, Neurological Movement - physiology Navigation Nematoda Nematodes Neurons Neurons - physiology Retraining Temperature Temperature gradients Thermosensing - physiology Trajectories |
title | Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20thermotaxis%20in%20Caenorhabditis%20elegans%20is%20mediated%20by%20distinct%20sensorimotor%20strategies%20driven%20by%20the%20AFD%20thermosensory%20neurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Luo,%20Linjiao&rft.date=2014-02-18&rft.volume=111&rft.issue=7&rft.spage=2776&rft.epage=2781&rft.pages=2776-2781&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1315205111&rft_dat=%3Cjstor_proqu%3E23768963%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1501609104&rft_id=info:pmid/24550307&rft_jstor_id=23768963&rfr_iscdi=true |