Loading…

Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons

The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (7), p.2776-2781
Main Authors: Luo, Linjiao, Cook, Nathan, Venkatachalam, Vivek, Martinez-Velazquez, Luis A., Zhang, Xiaodong, Calvo, Ana C., Hawk, Josh, MacInnis, Bronwyn L., Frank, Michelle, Ng, Jia Hong Ray, Klein, Mason, Gershow, Marc, Hammarlund, Marc, Goodman, Miriam B., Colón-Ramos, Daniel A., Zhang, Yun, Samuel, Aravinthan D. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3
cites cdi_FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3
container_end_page 2781
container_issue 7
container_start_page 2776
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Luo, Linjiao
Cook, Nathan
Venkatachalam, Vivek
Martinez-Velazquez, Luis A.
Zhang, Xiaodong
Calvo, Ana C.
Hawk, Josh
MacInnis, Bronwyn L.
Frank, Michelle
Ng, Jia Hong Ray
Klein, Mason
Gershow, Marc
Hammarlund, Marc
Goodman, Miriam B.
Colón-Ramos, Daniel A.
Zhang, Yun
Samuel, Aravinthan D. T.
description The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under some conditions, the worm migrates up temperature gradients below T ₛ (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward T ₛ to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below T ₛ. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.
doi_str_mv 10.1073/pnas.1315205111
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_23768963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23768963</jstor_id><sourcerecordid>23768963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhSMEotvCmRNgqRcuaT12YjsXpLJQQKrEAXq2nGSy61XWXuykYn8DfxqHLNvCiZMlzzfPbzwvy14AvQAq-eXOmXgBHEpGSwB4lC2AVpCLoqKPswWlTOaqYMVJdhrjhlJalYo-zU5YUZaUU7nIfr6zrQ3YDNY705NhjWHrB_PDRmIdWRp0PqxN3doh3WCPK-NSJZItttYM2JJ6T1obB-uagUR00QebBHwgcQgJWFmMpA32Dt2EJn1ydf3-8M7M74nDMXgXn2VPOtNHfH44z7Lb6w_flp_ymy8fPy-vbvKmZHzIO0AEBqYrWs46hXUHpVKq4pXqgDLosBTSFKJmTLYtA6GaQtZYN1y0HasNP8vezrq7sU5zNOiS1V7vknMT9tobq_-uOLvWK3-necVZBTIJvDkIBP99xDjorY0N9r1x6MeooSyK6e9l8R8opULxUqqEnv-DbvwY0lZ-UyDSYukkeDlTTfAxBuyOvoHqKRN6yoS-z0TqePVw3CP_JwQPgKnzKAegpU5DiAS8nIFNTJu9F-BSqErwVH891zvjtVkFG_XtVzZZpsArYJz_All20wU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501609104</pqid></control><display><type>article</type><title>Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Luo, Linjiao ; Cook, Nathan ; Venkatachalam, Vivek ; Martinez-Velazquez, Luis A. ; Zhang, Xiaodong ; Calvo, Ana C. ; Hawk, Josh ; MacInnis, Bronwyn L. ; Frank, Michelle ; Ng, Jia Hong Ray ; Klein, Mason ; Gershow, Marc ; Hammarlund, Marc ; Goodman, Miriam B. ; Colón-Ramos, Daniel A. ; Zhang, Yun ; Samuel, Aravinthan D. T.</creator><creatorcontrib>Luo, Linjiao ; Cook, Nathan ; Venkatachalam, Vivek ; Martinez-Velazquez, Luis A. ; Zhang, Xiaodong ; Calvo, Ana C. ; Hawk, Josh ; MacInnis, Bronwyn L. ; Frank, Michelle ; Ng, Jia Hong Ray ; Klein, Mason ; Gershow, Marc ; Hammarlund, Marc ; Goodman, Miriam B. ; Colón-Ramos, Daniel A. ; Zhang, Yun ; Samuel, Aravinthan D. T.</creatorcontrib><description>The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under some conditions, the worm migrates up temperature gradients below T ₛ (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward T ₛ to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below T ₛ. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1315205111</identifier><identifier>PMID: 24550307</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aircraft maneuvers ; Animal behavior ; Animals ; Behavioral neuroscience ; Biological Sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - physiology ; Calcium ; Interneurons ; Laser ablation ; Memory ; Memory, Long-Term - physiology ; Models, Neurological ; Movement - physiology ; Navigation ; Nematoda ; Nematodes ; Neurons ; Neurons - physiology ; Retraining ; Temperature ; Temperature gradients ; Thermosensing - physiology ; Trajectories</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2776-2781</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3</citedby><cites>FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23768963$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23768963$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24550307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Linjiao</creatorcontrib><creatorcontrib>Cook, Nathan</creatorcontrib><creatorcontrib>Venkatachalam, Vivek</creatorcontrib><creatorcontrib>Martinez-Velazquez, Luis A.</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Calvo, Ana C.</creatorcontrib><creatorcontrib>Hawk, Josh</creatorcontrib><creatorcontrib>MacInnis, Bronwyn L.</creatorcontrib><creatorcontrib>Frank, Michelle</creatorcontrib><creatorcontrib>Ng, Jia Hong Ray</creatorcontrib><creatorcontrib>Klein, Mason</creatorcontrib><creatorcontrib>Gershow, Marc</creatorcontrib><creatorcontrib>Hammarlund, Marc</creatorcontrib><creatorcontrib>Goodman, Miriam B.</creatorcontrib><creatorcontrib>Colón-Ramos, Daniel A.</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Samuel, Aravinthan D. T.</creatorcontrib><title>Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under some conditions, the worm migrates up temperature gradients below T ₛ (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward T ₛ to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below T ₛ. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.</description><subject>Aircraft maneuvers</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Calcium</subject><subject>Interneurons</subject><subject>Laser ablation</subject><subject>Memory</subject><subject>Memory, Long-Term - physiology</subject><subject>Models, Neurological</subject><subject>Movement - physiology</subject><subject>Navigation</subject><subject>Nematoda</subject><subject>Nematodes</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Retraining</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermosensing - physiology</subject><subject>Trajectories</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkkFv1DAQhSMEotvCmRNgqRcuaT12YjsXpLJQQKrEAXq2nGSy61XWXuykYn8DfxqHLNvCiZMlzzfPbzwvy14AvQAq-eXOmXgBHEpGSwB4lC2AVpCLoqKPswWlTOaqYMVJdhrjhlJalYo-zU5YUZaUU7nIfr6zrQ3YDNY705NhjWHrB_PDRmIdWRp0PqxN3doh3WCPK-NSJZItttYM2JJ6T1obB-uagUR00QebBHwgcQgJWFmMpA32Dt2EJn1ydf3-8M7M74nDMXgXn2VPOtNHfH44z7Lb6w_flp_ymy8fPy-vbvKmZHzIO0AEBqYrWs46hXUHpVKq4pXqgDLosBTSFKJmTLYtA6GaQtZYN1y0HasNP8vezrq7sU5zNOiS1V7vknMT9tobq_-uOLvWK3-necVZBTIJvDkIBP99xDjorY0N9r1x6MeooSyK6e9l8R8opULxUqqEnv-DbvwY0lZ-UyDSYukkeDlTTfAxBuyOvoHqKRN6yoS-z0TqePVw3CP_JwQPgKnzKAegpU5DiAS8nIFNTJu9F-BSqErwVH891zvjtVkFG_XtVzZZpsArYJz_All20wU</recordid><startdate>20140218</startdate><enddate>20140218</enddate><creator>Luo, Linjiao</creator><creator>Cook, Nathan</creator><creator>Venkatachalam, Vivek</creator><creator>Martinez-Velazquez, Luis A.</creator><creator>Zhang, Xiaodong</creator><creator>Calvo, Ana C.</creator><creator>Hawk, Josh</creator><creator>MacInnis, Bronwyn L.</creator><creator>Frank, Michelle</creator><creator>Ng, Jia Hong Ray</creator><creator>Klein, Mason</creator><creator>Gershow, Marc</creator><creator>Hammarlund, Marc</creator><creator>Goodman, Miriam B.</creator><creator>Colón-Ramos, Daniel A.</creator><creator>Zhang, Yun</creator><creator>Samuel, Aravinthan D. T.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140218</creationdate><title>Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons</title><author>Luo, Linjiao ; Cook, Nathan ; Venkatachalam, Vivek ; Martinez-Velazquez, Luis A. ; Zhang, Xiaodong ; Calvo, Ana C. ; Hawk, Josh ; MacInnis, Bronwyn L. ; Frank, Michelle ; Ng, Jia Hong Ray ; Klein, Mason ; Gershow, Marc ; Hammarlund, Marc ; Goodman, Miriam B. ; Colón-Ramos, Daniel A. ; Zhang, Yun ; Samuel, Aravinthan D. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aircraft maneuvers</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Calcium</topic><topic>Interneurons</topic><topic>Laser ablation</topic><topic>Memory</topic><topic>Memory, Long-Term - physiology</topic><topic>Models, Neurological</topic><topic>Movement - physiology</topic><topic>Navigation</topic><topic>Nematoda</topic><topic>Nematodes</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Retraining</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermosensing - physiology</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Linjiao</creatorcontrib><creatorcontrib>Cook, Nathan</creatorcontrib><creatorcontrib>Venkatachalam, Vivek</creatorcontrib><creatorcontrib>Martinez-Velazquez, Luis A.</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Calvo, Ana C.</creatorcontrib><creatorcontrib>Hawk, Josh</creatorcontrib><creatorcontrib>MacInnis, Bronwyn L.</creatorcontrib><creatorcontrib>Frank, Michelle</creatorcontrib><creatorcontrib>Ng, Jia Hong Ray</creatorcontrib><creatorcontrib>Klein, Mason</creatorcontrib><creatorcontrib>Gershow, Marc</creatorcontrib><creatorcontrib>Hammarlund, Marc</creatorcontrib><creatorcontrib>Goodman, Miriam B.</creatorcontrib><creatorcontrib>Colón-Ramos, Daniel A.</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Samuel, Aravinthan D. T.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Linjiao</au><au>Cook, Nathan</au><au>Venkatachalam, Vivek</au><au>Martinez-Velazquez, Luis A.</au><au>Zhang, Xiaodong</au><au>Calvo, Ana C.</au><au>Hawk, Josh</au><au>MacInnis, Bronwyn L.</au><au>Frank, Michelle</au><au>Ng, Jia Hong Ray</au><au>Klein, Mason</au><au>Gershow, Marc</au><au>Hammarlund, Marc</au><au>Goodman, Miriam B.</au><au>Colón-Ramos, Daniel A.</au><au>Zhang, Yun</au><au>Samuel, Aravinthan D. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-18</date><risdate>2014</risdate><volume>111</volume><issue>7</issue><spage>2776</spage><epage>2781</epage><pages>2776-2781</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The nematode Caenorhabditis elegans navigates toward a preferred temperature setpoint (T ₛ) determined by long-term temperature exposure. During thermotaxis, the worm migrates down temperature gradients at temperatures above T ₛ (negative thermotaxis) and performs isothermal tracking near T ₛ. Under some conditions, the worm migrates up temperature gradients below T ₛ (positive thermotaxis). Here, we analyze positive and negative thermotaxis toward T ₛ to study the role of specific neurons that have been proposed to be involved in thermotaxis using genetic ablation, behavioral tracking, and calcium imaging. We find differences in the strategies for positive and negative thermotaxis. Negative thermotaxis is achieved through biasing the frequency of reorientation maneuvers (turns and reversal turns) and biasing the direction of reorientation maneuvers toward colder temperatures. Positive thermotaxis, in contrast, biases only the direction of reorientation maneuvers toward warmer temperatures. We find that the AFD thermosensory neuron drives both positive and negative thermotaxis. The AIY interneuron, which is postsynaptic to AFD, may mediate the switch from negative to positive thermotaxis below T ₛ. We propose that multiple thermotactic behaviors, each defined by a distinct set of sensorimotor transformations, emanate from the AFD thermosensory neurons. AFD learns and stores the memory of preferred temperatures, detects temperature gradients, and drives the appropriate thermotactic behavior in each temperature regime by the flexible use of downstream circuits.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24550307</pmid><doi>10.1073/pnas.1315205111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2776-2781
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_23768963
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection
subjects Aircraft maneuvers
Animal behavior
Animals
Behavioral neuroscience
Biological Sciences
Caenorhabditis elegans
Caenorhabditis elegans - physiology
Calcium
Interneurons
Laser ablation
Memory
Memory, Long-Term - physiology
Models, Neurological
Movement - physiology
Navigation
Nematoda
Nematodes
Neurons
Neurons - physiology
Retraining
Temperature
Temperature gradients
Thermosensing - physiology
Trajectories
title Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20thermotaxis%20in%20Caenorhabditis%20elegans%20is%20mediated%20by%20distinct%20sensorimotor%20strategies%20driven%20by%20the%20AFD%20thermosensory%20neurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Luo,%20Linjiao&rft.date=2014-02-18&rft.volume=111&rft.issue=7&rft.spage=2776&rft.epage=2781&rft.pages=2776-2781&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1315205111&rft_dat=%3Cjstor_proqu%3E23768963%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-f1ee121af4d32f8ebf158889398f1021fe567a46b227dd2168c47bebc36df2ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1501609104&rft_id=info:pmid/24550307&rft_jstor_id=23768963&rfr_iscdi=true