Loading…
Modelling the structural response of an eukaryotic cell in the optical stretcher
The cytoskeleton of an eukaryotic cell is a composite polymer material with unique structural (mechanical) properties. To investigate the role of individual cytoskeletal polymers in the deformation response of a cell to an external force (stress), we created two structural models – a thick shell mod...
Saved in:
Published in: | Current science (Bangalore) 2005-05, Vol.88 (9), p.1434-1440 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The cytoskeleton of an eukaryotic cell is a composite polymer material with unique structural (mechanical) properties. To investigate the role of individual cytoskeletal polymers in the deformation response of a cell to an external force (stress), we created two structural models – a thick shell model for the actin cortex, and a three-layered model for the whole cell. These structural models for a cell are based on data obtained by deforming suspended cells, where each cell is stretched between two counter-propagating laser beams using an optical stretcher. Our models, with the data, suggest that the outer actin cortex is the main determinant of the structural response of the cell. |
---|---|
ISSN: | 0011-3891 |