Loading…
MARGINAL CURVATURES FOR FUNCTIONS OF PARAMETERS IN NONLINEAR REGRESSION
The marginal curvature by Clarke (1987) for individual parameters in nonlinear models not only improves the inference on each parameter but also has been found useful in experimental design for nonlinear models. In this article we develop the marginal curvature for functions of parameters. We show t...
Saved in:
Published in: | Statistica Sinica 1998-04, Vol.8 (2), p.467-476 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 476 |
container_issue | 2 |
container_start_page | 467 |
container_title | Statistica Sinica |
container_volume | 8 |
creator | Kang, Gunseog Rawlings, John O. |
description | The marginal curvature by Clarke (1987) for individual parameters in nonlinear models not only improves the inference on each parameter but also has been found useful in experimental design for nonlinear models. In this article we develop the marginal curvature for functions of parameters. We show that, for a given reparametrization, the marginal curvatures for the transformed parameters can be computed without determining the inverse transformation. Furthermore, the marginal curvature for a function of parameters depends only on the marginal curvatures of the original parameters and on the derivatives of the function with respect to the parameters involved in that function. We also present a more efficient computing algorithm of Clarke's marginal curvature measure. The resulting expression enables us to compare Clarke's measure with other available measures. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24306503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24306503</jstor_id><sourcerecordid>24306503</sourcerecordid><originalsourceid>FETCH-LOGICAL-j175t-ff8d99f58eacb0881b35a4174546747b60a1fe96cc6079827e4ccb519688485e3</originalsourceid><addsrcrecordid>eNotjM1KxDAYAIMouKz7CEJeoPBlky8_x1DSWugmkrZel7YmsIuitHvx7S3oaeYwzB3ZMWNkoRHU_ebAVAEC8JEc1vUyARhApoHvSH2ysW68bWk5xDfbD9F1tAqRVoMv-yb4joaKvtpoT653saONpz74tvHORhpdvfXdlj2Rhzx-rOnwzz0ZKteXL0Ub6qa0bXFlCm9FzvrdmIw6jfMEWrOJ4yiYEiikEmqSMLKcjJxnCcroo0pinidkRmotNCa-J89_3-t6-1rO38vlc1x-zkfBQSJw_guewEAq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MARGINAL CURVATURES FOR FUNCTIONS OF PARAMETERS IN NONLINEAR REGRESSION</title><source>JSTOR</source><creator>Kang, Gunseog ; Rawlings, John O.</creator><creatorcontrib>Kang, Gunseog ; Rawlings, John O.</creatorcontrib><description>The marginal curvature by Clarke (1987) for individual parameters in nonlinear models not only improves the inference on each parameter but also has been found useful in experimental design for nonlinear models. In this article we develop the marginal curvature for functions of parameters. We show that, for a given reparametrization, the marginal curvatures for the transformed parameters can be computed without determining the inverse transformation. Furthermore, the marginal curvature for a function of parameters depends only on the marginal curvatures of the original parameters and on the derivatives of the function with respect to the parameters involved in that function. We also present a more efficient computing algorithm of Clarke's marginal curvature measure. The resulting expression enables us to compare Clarke's measure with other available measures.</description><identifier>ISSN: 1017-0405</identifier><identifier>EISSN: 1996-8507</identifier><language>eng</language><publisher>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</publisher><subject>Curvature ; Experiment design ; Inference ; Linear approximation ; Mathematical independent variables ; Mathematical transformations ; Nonlinearity ; Parametric models ; Point estimators ; Regression analysis</subject><ispartof>Statistica Sinica, 1998-04, Vol.8 (2), p.467-476</ispartof><rights>1998 Statistica Sinica</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24306503$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24306503$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58237,58470</link.rule.ids></links><search><creatorcontrib>Kang, Gunseog</creatorcontrib><creatorcontrib>Rawlings, John O.</creatorcontrib><title>MARGINAL CURVATURES FOR FUNCTIONS OF PARAMETERS IN NONLINEAR REGRESSION</title><title>Statistica Sinica</title><description>The marginal curvature by Clarke (1987) for individual parameters in nonlinear models not only improves the inference on each parameter but also has been found useful in experimental design for nonlinear models. In this article we develop the marginal curvature for functions of parameters. We show that, for a given reparametrization, the marginal curvatures for the transformed parameters can be computed without determining the inverse transformation. Furthermore, the marginal curvature for a function of parameters depends only on the marginal curvatures of the original parameters and on the derivatives of the function with respect to the parameters involved in that function. We also present a more efficient computing algorithm of Clarke's marginal curvature measure. The resulting expression enables us to compare Clarke's measure with other available measures.</description><subject>Curvature</subject><subject>Experiment design</subject><subject>Inference</subject><subject>Linear approximation</subject><subject>Mathematical independent variables</subject><subject>Mathematical transformations</subject><subject>Nonlinearity</subject><subject>Parametric models</subject><subject>Point estimators</subject><subject>Regression analysis</subject><issn>1017-0405</issn><issn>1996-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjM1KxDAYAIMouKz7CEJeoPBlky8_x1DSWugmkrZel7YmsIuitHvx7S3oaeYwzB3ZMWNkoRHU_ebAVAEC8JEc1vUyARhApoHvSH2ysW68bWk5xDfbD9F1tAqRVoMv-yb4joaKvtpoT653saONpz74tvHORhpdvfXdlj2Rhzx-rOnwzz0ZKteXL0Ub6qa0bXFlCm9FzvrdmIw6jfMEWrOJ4yiYEiikEmqSMLKcjJxnCcroo0pinidkRmotNCa-J89_3-t6-1rO38vlc1x-zkfBQSJw_guewEAq</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Kang, Gunseog</creator><creator>Rawlings, John O.</creator><general>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</general><scope/></search><sort><creationdate>19980401</creationdate><title>MARGINAL CURVATURES FOR FUNCTIONS OF PARAMETERS IN NONLINEAR REGRESSION</title><author>Kang, Gunseog ; Rawlings, John O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j175t-ff8d99f58eacb0881b35a4174546747b60a1fe96cc6079827e4ccb519688485e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Curvature</topic><topic>Experiment design</topic><topic>Inference</topic><topic>Linear approximation</topic><topic>Mathematical independent variables</topic><topic>Mathematical transformations</topic><topic>Nonlinearity</topic><topic>Parametric models</topic><topic>Point estimators</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Gunseog</creatorcontrib><creatorcontrib>Rawlings, John O.</creatorcontrib><jtitle>Statistica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Gunseog</au><au>Rawlings, John O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MARGINAL CURVATURES FOR FUNCTIONS OF PARAMETERS IN NONLINEAR REGRESSION</atitle><jtitle>Statistica Sinica</jtitle><date>1998-04-01</date><risdate>1998</risdate><volume>8</volume><issue>2</issue><spage>467</spage><epage>476</epage><pages>467-476</pages><issn>1017-0405</issn><eissn>1996-8507</eissn><abstract>The marginal curvature by Clarke (1987) for individual parameters in nonlinear models not only improves the inference on each parameter but also has been found useful in experimental design for nonlinear models. In this article we develop the marginal curvature for functions of parameters. We show that, for a given reparametrization, the marginal curvatures for the transformed parameters can be computed without determining the inverse transformation. Furthermore, the marginal curvature for a function of parameters depends only on the marginal curvatures of the original parameters and on the derivatives of the function with respect to the parameters involved in that function. We also present a more efficient computing algorithm of Clarke's marginal curvature measure. The resulting expression enables us to compare Clarke's measure with other available measures.</abstract><pub>Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association</pub><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-0405 |
ispartof | Statistica Sinica, 1998-04, Vol.8 (2), p.467-476 |
issn | 1017-0405 1996-8507 |
language | eng |
recordid | cdi_jstor_primary_24306503 |
source | JSTOR |
subjects | Curvature Experiment design Inference Linear approximation Mathematical independent variables Mathematical transformations Nonlinearity Parametric models Point estimators Regression analysis |
title | MARGINAL CURVATURES FOR FUNCTIONS OF PARAMETERS IN NONLINEAR REGRESSION |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MARGINAL%20CURVATURES%20FOR%20FUNCTIONS%20OF%20PARAMETERS%20IN%20NONLINEAR%20REGRESSION&rft.jtitle=Statistica%20Sinica&rft.au=Kang,%20Gunseog&rft.date=1998-04-01&rft.volume=8&rft.issue=2&rft.spage=467&rft.epage=476&rft.pages=467-476&rft.issn=1017-0405&rft.eissn=1996-8507&rft_id=info:doi/&rft_dat=%3Cjstor%3E24306503%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j175t-ff8d99f58eacb0881b35a4174546747b60a1fe96cc6079827e4ccb519688485e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24306503&rfr_iscdi=true |