Loading…
A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES
Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that an...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2015-08, Vol.143 (8), p.3413-3420 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3420 |
container_issue | 8 |
container_start_page | 3413 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 143 |
creator | GUIRAO, A. J. MONTESINOS, V. ZIZLER, V. |
description | Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C∞-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a C2-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (hn) in X with ||hn|| ↛ 0 exists such that ||x ± hn|| → 1. |
doi_str_mv | 10.1090/S0002-9939-2015-12617-2 |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24507807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24507807</jstor_id><sourcerecordid>24507807</sourcerecordid><originalsourceid>FETCH-LOGICAL-j92t-ec631a78a6fed00c3fda1c6bc8d679b10b3a90bddeac9aa25943db9ea21703be3</originalsourceid><addsrcrecordid>eNo9jEFKxDAYRoMoWEePIOYC0T9JmzTLTs3YQqYZJlnoakibFCyKMp2NN_AUHs6TOKC4-ni8x4fQDYVbCgruHAAwohRXhAEtCGWCSsJOUEahLIkomThF2X90ji7meToiVbnM0LLCnfUa2w7rR7_Va403tu28w3aF6-_PL-LW1voGLytjHG67ozZPjb7fVga7TVVrd4nOxvAyp6u_XSC_0r5uiLEPbV0ZMil2IGkQnAZZBjGmCDDwMQY6iH4oo5Cqp9DzoKCPMYVBhcAKlfPYqxQYlcD7xBfo-vd2mg9v-937_vk17D92LC9AliD5D4UKRnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>GUIRAO, A. J. ; MONTESINOS, V. ; ZIZLER, V.</creator><creatorcontrib>GUIRAO, A. J. ; MONTESINOS, V. ; ZIZLER, V.</creatorcontrib><description>Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C∞-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a C2-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (hn) in X with ||hn|| ↛ 0 exists such that ||x ± hn|| → 1.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-2015-12617-2</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Proceedings of the American Mathematical Society, 2015-08, Vol.143 (8), p.3413-3420</ispartof><rights>2015 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24507807$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24507807$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>GUIRAO, A. J.</creatorcontrib><creatorcontrib>MONTESINOS, V.</creatorcontrib><creatorcontrib>ZIZLER, V.</creatorcontrib><title>A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES</title><title>Proceedings of the American Mathematical Society</title><description>Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C∞-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a C2-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (hn) in X with ||hn|| ↛ 0 exists such that ||x ± hn|| → 1.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9jEFKxDAYRoMoWEePIOYC0T9JmzTLTs3YQqYZJlnoakibFCyKMp2NN_AUHs6TOKC4-ni8x4fQDYVbCgruHAAwohRXhAEtCGWCSsJOUEahLIkomThF2X90ji7meToiVbnM0LLCnfUa2w7rR7_Va403tu28w3aF6-_PL-LW1voGLytjHG67ozZPjb7fVga7TVVrd4nOxvAyp6u_XSC_0r5uiLEPbV0ZMil2IGkQnAZZBjGmCDDwMQY6iH4oo5Cqp9DzoKCPMYVBhcAKlfPYqxQYlcD7xBfo-vd2mg9v-937_vk17D92LC9AliD5D4UKRnA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>GUIRAO, A. J.</creator><creator>MONTESINOS, V.</creator><creator>ZIZLER, V.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20150801</creationdate><title>A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES</title><author>GUIRAO, A. J. ; MONTESINOS, V. ; ZIZLER, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j92t-ec631a78a6fed00c3fda1c6bc8d679b10b3a90bddeac9aa25943db9ea21703be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUIRAO, A. J.</creatorcontrib><creatorcontrib>MONTESINOS, V.</creatorcontrib><creatorcontrib>ZIZLER, V.</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUIRAO, A. J.</au><au>MONTESINOS, V.</au><au>ZIZLER, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>143</volume><issue>8</issue><spage>3413</spage><epage>3420</epage><pages>3413-3420</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C∞-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a C2-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (hn) in X with ||hn|| ↛ 0 exists such that ||x ± hn|| → 1.</abstract><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-2015-12617-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2015-08, Vol.143 (8), p.3413-3420 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_jstor_primary_24507807 |
source | American Mathematical Society Publications - Open Access; JSTOR Archival Journals and Primary Sources Collection |
title | A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NOTE%20ON%20EXTREME%20POINTS%20OF%20C%E2%88%9E-SMOOTH%20BALLS%20IN%20POLYHEDRAL%20SPACES&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=GUIRAO,%20A.%20J.&rft.date=2015-08-01&rft.volume=143&rft.issue=8&rft.spage=3413&rft.epage=3420&rft.pages=3413-3420&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/S0002-9939-2015-12617-2&rft_dat=%3Cjstor%3E24507807%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j92t-ec631a78a6fed00c3fda1c6bc8d679b10b3a90bddeac9aa25943db9ea21703be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24507807&rfr_iscdi=true |