Loading…

A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES

Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that an...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2015-08, Vol.143 (8), p.3413-3420
Main Authors: GUIRAO, A. J., MONTESINOS, V., ZIZLER, V.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3420
container_issue 8
container_start_page 3413
container_title Proceedings of the American Mathematical Society
container_volume 143
creator GUIRAO, A. J.
MONTESINOS, V.
ZIZLER, V.
description Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C∞-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a C2-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (hn) in X with ||hn|| ↛ 0 exists such that ||x ± hn|| → 1.
doi_str_mv 10.1090/S0002-9939-2015-12617-2
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24507807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24507807</jstor_id><sourcerecordid>24507807</sourcerecordid><originalsourceid>FETCH-LOGICAL-j92t-ec631a78a6fed00c3fda1c6bc8d679b10b3a90bddeac9aa25943db9ea21703be3</originalsourceid><addsrcrecordid>eNo9jEFKxDAYRoMoWEePIOYC0T9JmzTLTs3YQqYZJlnoakibFCyKMp2NN_AUHs6TOKC4-ni8x4fQDYVbCgruHAAwohRXhAEtCGWCSsJOUEahLIkomThF2X90ji7meToiVbnM0LLCnfUa2w7rR7_Va403tu28w3aF6-_PL-LW1voGLytjHG67ozZPjb7fVga7TVVrd4nOxvAyp6u_XSC_0r5uiLEPbV0ZMil2IGkQnAZZBjGmCDDwMQY6iH4oo5Cqp9DzoKCPMYVBhcAKlfPYqxQYlcD7xBfo-vd2mg9v-937_vk17D92LC9AliD5D4UKRnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES</title><source>American Mathematical Society Publications - Open Access</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>GUIRAO, A. J. ; MONTESINOS, V. ; ZIZLER, V.</creator><creatorcontrib>GUIRAO, A. J. ; MONTESINOS, V. ; ZIZLER, V.</creatorcontrib><description>Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C∞-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a C2-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (hn) in X with ||hn|| ↛ 0 exists such that ||x ± hn|| → 1.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-2015-12617-2</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Proceedings of the American Mathematical Society, 2015-08, Vol.143 (8), p.3413-3420</ispartof><rights>2015 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24507807$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24507807$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>GUIRAO, A. J.</creatorcontrib><creatorcontrib>MONTESINOS, V.</creatorcontrib><creatorcontrib>ZIZLER, V.</creatorcontrib><title>A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES</title><title>Proceedings of the American Mathematical Society</title><description>Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C∞-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a C2-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (hn) in X with ||hn|| ↛ 0 exists such that ||x ± hn|| → 1.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9jEFKxDAYRoMoWEePIOYC0T9JmzTLTs3YQqYZJlnoakibFCyKMp2NN_AUHs6TOKC4-ni8x4fQDYVbCgruHAAwohRXhAEtCGWCSsJOUEahLIkomThF2X90ji7meToiVbnM0LLCnfUa2w7rR7_Va403tu28w3aF6-_PL-LW1voGLytjHG67ozZPjb7fVga7TVVrd4nOxvAyp6u_XSC_0r5uiLEPbV0ZMil2IGkQnAZZBjGmCDDwMQY6iH4oo5Cqp9DzoKCPMYVBhcAKlfPYqxQYlcD7xBfo-vd2mg9v-937_vk17D92LC9AliD5D4UKRnA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>GUIRAO, A. J.</creator><creator>MONTESINOS, V.</creator><creator>ZIZLER, V.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20150801</creationdate><title>A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES</title><author>GUIRAO, A. J. ; MONTESINOS, V. ; ZIZLER, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j92t-ec631a78a6fed00c3fda1c6bc8d679b10b3a90bddeac9aa25943db9ea21703be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUIRAO, A. J.</creatorcontrib><creatorcontrib>MONTESINOS, V.</creatorcontrib><creatorcontrib>ZIZLER, V.</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUIRAO, A. J.</au><au>MONTESINOS, V.</au><au>ZIZLER, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>143</volume><issue>8</issue><spage>3413</spage><epage>3420</epage><pages>3413-3420</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Morris (1983) proved that every separable Banach space X that contains an isomorphic copy of c0 has an equivalent strictly convex norm such that all points of its unit sphere SX are unpreserved extreme, i.e., they are no longer extreme points of BX**. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent C∞-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a C2-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point x on the sphere for which a sequence (hn) in X with ||hn|| ↛ 0 exists such that ||x ± hn|| → 1.</abstract><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-2015-12617-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2015-08, Vol.143 (8), p.3413-3420
issn 0002-9939
1088-6826
language eng
recordid cdi_jstor_primary_24507807
source American Mathematical Society Publications - Open Access; JSTOR Archival Journals and Primary Sources Collection
title A NOTE ON EXTREME POINTS OF C∞-SMOOTH BALLS IN POLYHEDRAL SPACES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NOTE%20ON%20EXTREME%20POINTS%20OF%20C%E2%88%9E-SMOOTH%20BALLS%20IN%20POLYHEDRAL%20SPACES&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=GUIRAO,%20A.%20J.&rft.date=2015-08-01&rft.volume=143&rft.issue=8&rft.spage=3413&rft.epage=3420&rft.pages=3413-3420&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/S0002-9939-2015-12617-2&rft_dat=%3Cjstor%3E24507807%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j92t-ec631a78a6fed00c3fda1c6bc8d679b10b3a90bddeac9aa25943db9ea21703be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24507807&rfr_iscdi=true