Loading…

THE STRUCTURE OF THE QUANTUM SEMIMARTINGALE ALGEBRAS

In the theory of quantum stochastic calculus one disposes of two quantum semimartingale algebras S and S'. The first one is an algebra for the composition of operators and has a quantum functional calculus for analytical functions. The second one is larger and is an algebra for the operations o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of operator theory 2001-09, Vol.46 (2), p.391-410
Main Author: ATTAL, STÉPHANE
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 410
container_issue 2
container_start_page 391
container_title Journal of operator theory
container_volume 46
creator ATTAL, STÉPHANE
description In the theory of quantum stochastic calculus one disposes of two quantum semimartingale algebras S and S'. The first one is an algebra for the composition of operators and has a quantum functional calculus for analytical functions. The second one is larger and is an algebra for the operations of quantum square and angle brackets. In this article we study the algebraic and analytic properties of these algebras. This study is mainly performed through a remarkable transform of quantum processes which, surprisingly, establishes a bijection in between these two algebras. This bijection allows to define norms on these algebras that equip them with Banach algebra structures.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24715503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24715503</jstor_id><sourcerecordid>24715503</sourcerecordid><originalsourceid>FETCH-LOGICAL-j175t-551a70818e34c8c9a2ca051f0b570318e9c02d6745414ee27ed018721d7a428d3</originalsourceid><addsrcrecordid>eNotjcFKxDAUAIMoWFc_QegPBN5LXnzpMZZst9Dusm16XmKbBYuitHvx71X0NDCHmSuRoSWUzETXIgPNhSRQdCvu1nUG0AisMkFh5_M-dEMZhs7nh23-K46D24ehzXvf1q3rQr2vXONz11T-uXP9vbg5x7c1PfxzI4atD-VONoeqLl0jZ2RzkcZgZLBok6bRjkVUYwSDZ3gx_PO3qRhBTU9MhpBSUpwmQMsKJ46k7KQ34vGvO6-Xj-X0uby-x-XrpIjRGND6G_IZOVE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE STRUCTURE OF THE QUANTUM SEMIMARTINGALE ALGEBRAS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>ATTAL, STÉPHANE</creator><creatorcontrib>ATTAL, STÉPHANE</creatorcontrib><description>In the theory of quantum stochastic calculus one disposes of two quantum semimartingale algebras S and S'. The first one is an algebra for the composition of operators and has a quantum functional calculus for analytical functions. The second one is larger and is an algebra for the operations of quantum square and angle brackets. In this article we study the algebraic and analytic properties of these algebras. This study is mainly performed through a remarkable transform of quantum processes which, surprisingly, establishes a bijection in between these two algebras. This bijection allows to define norms on these algebras that equip them with Banach algebra structures.</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><language>eng</language><publisher>Theta Foundation</publisher><subject>Adjoints ; Algebra ; Integration by parts ; Mathematical integrals ; Mathematical theorems ; Mathematical vectors ; Stochastic processes ; Tensors</subject><ispartof>Journal of operator theory, 2001-09, Vol.46 (2), p.391-410</ispartof><rights>Copyright © 2001 Theta</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24715503$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24715503$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>ATTAL, STÉPHANE</creatorcontrib><title>THE STRUCTURE OF THE QUANTUM SEMIMARTINGALE ALGEBRAS</title><title>Journal of operator theory</title><description>In the theory of quantum stochastic calculus one disposes of two quantum semimartingale algebras S and S'. The first one is an algebra for the composition of operators and has a quantum functional calculus for analytical functions. The second one is larger and is an algebra for the operations of quantum square and angle brackets. In this article we study the algebraic and analytic properties of these algebras. This study is mainly performed through a remarkable transform of quantum processes which, surprisingly, establishes a bijection in between these two algebras. This bijection allows to define norms on these algebras that equip them with Banach algebra structures.</description><subject>Adjoints</subject><subject>Algebra</subject><subject>Integration by parts</subject><subject>Mathematical integrals</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Stochastic processes</subject><subject>Tensors</subject><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjcFKxDAUAIMoWFc_QegPBN5LXnzpMZZst9Dusm16XmKbBYuitHvx71X0NDCHmSuRoSWUzETXIgPNhSRQdCvu1nUG0AisMkFh5_M-dEMZhs7nh23-K46D24ehzXvf1q3rQr2vXONz11T-uXP9vbg5x7c1PfxzI4atD-VONoeqLl0jZ2RzkcZgZLBok6bRjkVUYwSDZ3gx_PO3qRhBTU9MhpBSUpwmQMsKJ46k7KQ34vGvO6-Xj-X0uby-x-XrpIjRGND6G_IZOVE</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>ATTAL, STÉPHANE</creator><general>Theta Foundation</general><scope/></search><sort><creationdate>20010901</creationdate><title>THE STRUCTURE OF THE QUANTUM SEMIMARTINGALE ALGEBRAS</title><author>ATTAL, STÉPHANE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j175t-551a70818e34c8c9a2ca051f0b570318e9c02d6745414ee27ed018721d7a428d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adjoints</topic><topic>Algebra</topic><topic>Integration by parts</topic><topic>Mathematical integrals</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Stochastic processes</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ATTAL, STÉPHANE</creatorcontrib><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ATTAL, STÉPHANE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE STRUCTURE OF THE QUANTUM SEMIMARTINGALE ALGEBRAS</atitle><jtitle>Journal of operator theory</jtitle><date>2001-09-01</date><risdate>2001</risdate><volume>46</volume><issue>2</issue><spage>391</spage><epage>410</epage><pages>391-410</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>In the theory of quantum stochastic calculus one disposes of two quantum semimartingale algebras S and S'. The first one is an algebra for the composition of operators and has a quantum functional calculus for analytical functions. The second one is larger and is an algebra for the operations of quantum square and angle brackets. In this article we study the algebraic and analytic properties of these algebras. This study is mainly performed through a remarkable transform of quantum processes which, surprisingly, establishes a bijection in between these two algebras. This bijection allows to define norms on these algebras that equip them with Banach algebra structures.</abstract><pub>Theta Foundation</pub><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0379-4024
ispartof Journal of operator theory, 2001-09, Vol.46 (2), p.391-410
issn 0379-4024
1841-7744
language eng
recordid cdi_jstor_primary_24715503
source JSTOR Archival Journals and Primary Sources Collection
subjects Adjoints
Algebra
Integration by parts
Mathematical integrals
Mathematical theorems
Mathematical vectors
Stochastic processes
Tensors
title THE STRUCTURE OF THE QUANTUM SEMIMARTINGALE ALGEBRAS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20STRUCTURE%20OF%20THE%20QUANTUM%20SEMIMARTINGALE%20ALGEBRAS&rft.jtitle=Journal%20of%20operator%20theory&rft.au=ATTAL,%20ST%C3%89PHANE&rft.date=2001-09-01&rft.volume=46&rft.issue=2&rft.spage=391&rft.epage=410&rft.pages=391-410&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/&rft_dat=%3Cjstor%3E24715503%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j175t-551a70818e34c8c9a2ca051f0b570318e9c02d6745414ee27ed018721d7a428d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24715503&rfr_iscdi=true