Loading…
Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations
Saved in:
Published in: | Indiana University mathematics journal 1988-07, Vol.37 (2), p.389-408 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 408 |
container_issue | 2 |
container_start_page | 389 |
container_title | Indiana University mathematics journal |
container_volume | 37 |
creator | ESCOBALES, RICHARD H. PARKER, PHILLIP E. |
description | |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24895427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24895427</jstor_id><sourcerecordid>24895427</sourcerecordid><originalsourceid>FETCH-LOGICAL-j107t-e8b5dc2a2f0fadd8faf35047cd050f35c013e5d4022e437a1c9e5fbaf7d6cbae3</originalsourceid><addsrcrecordid>eNotzs1KxDAUBeAgCo6jjyDkBQppfky7lOKMwjBu7Hq4TW6clLTRJBXm7S3o6pzF4eNckU3dSlEprpprsmGM84qrurkldzmPjAmtRLsh_R7jhCV5Q7s4Z_xecDaYaXS0nJEeY5og0G5JP1CWhOvoHKcY4ueFdgFypn6m_TT4sAK7GDwUvzL35MZByPjwn1vS714-utfq8L5_654P1VgzXSpsBmUNB-6YA2sbB04oJrWxTLG1GlYLVFau31EKDbVpUbkBnLZPZgAUW_L45465xHT6Sn6CdDlx2bRKci1-AafDTVM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>ESCOBALES, RICHARD H. ; PARKER, PHILLIP E.</creator><creatorcontrib>ESCOBALES, RICHARD H. ; PARKER, PHILLIP E.</creatorcontrib><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><language>eng</language><publisher>Department of Mathematics INDIANA UNIVERSITY</publisher><subject>Conformal mapping ; Curvature ; Gauss equations ; Infinitesimals ; Leaves ; Mathematics ; Maximum principle ; Riemann manifold ; Tensors ; Vector fields</subject><ispartof>Indiana University mathematics journal, 1988-07, Vol.37 (2), p.389-408</ispartof><rights>1988 Department of Mathematics, Indiana University</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24895427$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24895427$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58212,58445</link.rule.ids></links><search><creatorcontrib>ESCOBALES, RICHARD H.</creatorcontrib><creatorcontrib>PARKER, PHILLIP E.</creatorcontrib><title>Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations</title><title>Indiana University mathematics journal</title><subject>Conformal mapping</subject><subject>Curvature</subject><subject>Gauss equations</subject><subject>Infinitesimals</subject><subject>Leaves</subject><subject>Mathematics</subject><subject>Maximum principle</subject><subject>Riemann manifold</subject><subject>Tensors</subject><subject>Vector fields</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzs1KxDAUBeAgCo6jjyDkBQppfky7lOKMwjBu7Hq4TW6clLTRJBXm7S3o6pzF4eNckU3dSlEprpprsmGM84qrurkldzmPjAmtRLsh_R7jhCV5Q7s4Z_xecDaYaXS0nJEeY5og0G5JP1CWhOvoHKcY4ueFdgFypn6m_TT4sAK7GDwUvzL35MZByPjwn1vS714-utfq8L5_654P1VgzXSpsBmUNB-6YA2sbB04oJrWxTLG1GlYLVFau31EKDbVpUbkBnLZPZgAUW_L45465xHT6Sn6CdDlx2bRKci1-AafDTVM</recordid><startdate>19880701</startdate><enddate>19880701</enddate><creator>ESCOBALES, RICHARD H.</creator><creator>PARKER, PHILLIP E.</creator><general>Department of Mathematics INDIANA UNIVERSITY</general><scope/></search><sort><creationdate>19880701</creationdate><title>Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations</title><author>ESCOBALES, RICHARD H. ; PARKER, PHILLIP E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j107t-e8b5dc2a2f0fadd8faf35047cd050f35c013e5d4022e437a1c9e5fbaf7d6cbae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Conformal mapping</topic><topic>Curvature</topic><topic>Gauss equations</topic><topic>Infinitesimals</topic><topic>Leaves</topic><topic>Mathematics</topic><topic>Maximum principle</topic><topic>Riemann manifold</topic><topic>Tensors</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ESCOBALES, RICHARD H.</creatorcontrib><creatorcontrib>PARKER, PHILLIP E.</creatorcontrib><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ESCOBALES, RICHARD H.</au><au>PARKER, PHILLIP E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations</atitle><jtitle>Indiana University mathematics journal</jtitle><date>1988-07-01</date><risdate>1988</risdate><volume>37</volume><issue>2</issue><spage>389</spage><epage>408</epage><pages>389-408</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><pub>Department of Mathematics INDIANA UNIVERSITY</pub><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2518 |
ispartof | Indiana University mathematics journal, 1988-07, Vol.37 (2), p.389-408 |
issn | 0022-2518 1943-5258 |
language | eng |
recordid | cdi_jstor_primary_24895427 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Conformal mapping Curvature Gauss equations Infinitesimals Leaves Mathematics Maximum principle Riemann manifold Tensors Vector fields |
title | Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Consequences%20of%20the%20Normal%20Curvature%20Cohomology%20Class%20in%20Umbilic%20Foliations&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=ESCOBALES,%20RICHARD%20H.&rft.date=1988-07-01&rft.volume=37&rft.issue=2&rft.spage=389&rft.epage=408&rft.pages=389-408&rft.issn=0022-2518&rft.eissn=1943-5258&rft_id=info:doi/&rft_dat=%3Cjstor%3E24895427%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j107t-e8b5dc2a2f0fadd8faf35047cd050f35c013e5d4022e437a1c9e5fbaf7d6cbae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24895427&rfr_iscdi=true |