Loading…

Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations

Saved in:
Bibliographic Details
Published in:Indiana University mathematics journal 1988-07, Vol.37 (2), p.389-408
Main Authors: ESCOBALES, RICHARD H., PARKER, PHILLIP E.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 408
container_issue 2
container_start_page 389
container_title Indiana University mathematics journal
container_volume 37
creator ESCOBALES, RICHARD H.
PARKER, PHILLIP E.
description
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_24895427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24895427</jstor_id><sourcerecordid>24895427</sourcerecordid><originalsourceid>FETCH-LOGICAL-j107t-e8b5dc2a2f0fadd8faf35047cd050f35c013e5d4022e437a1c9e5fbaf7d6cbae3</originalsourceid><addsrcrecordid>eNotzs1KxDAUBeAgCo6jjyDkBQppfky7lOKMwjBu7Hq4TW6clLTRJBXm7S3o6pzF4eNckU3dSlEprpprsmGM84qrurkldzmPjAmtRLsh_R7jhCV5Q7s4Z_xecDaYaXS0nJEeY5og0G5JP1CWhOvoHKcY4ueFdgFypn6m_TT4sAK7GDwUvzL35MZByPjwn1vS714-utfq8L5_654P1VgzXSpsBmUNB-6YA2sbB04oJrWxTLG1GlYLVFau31EKDbVpUbkBnLZPZgAUW_L45465xHT6Sn6CdDlx2bRKci1-AafDTVM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>ESCOBALES, RICHARD H. ; PARKER, PHILLIP E.</creator><creatorcontrib>ESCOBALES, RICHARD H. ; PARKER, PHILLIP E.</creatorcontrib><identifier>ISSN: 0022-2518</identifier><identifier>EISSN: 1943-5258</identifier><language>eng</language><publisher>Department of Mathematics INDIANA UNIVERSITY</publisher><subject>Conformal mapping ; Curvature ; Gauss equations ; Infinitesimals ; Leaves ; Mathematics ; Maximum principle ; Riemann manifold ; Tensors ; Vector fields</subject><ispartof>Indiana University mathematics journal, 1988-07, Vol.37 (2), p.389-408</ispartof><rights>1988 Department of Mathematics, Indiana University</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24895427$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24895427$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58212,58445</link.rule.ids></links><search><creatorcontrib>ESCOBALES, RICHARD H.</creatorcontrib><creatorcontrib>PARKER, PHILLIP E.</creatorcontrib><title>Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations</title><title>Indiana University mathematics journal</title><subject>Conformal mapping</subject><subject>Curvature</subject><subject>Gauss equations</subject><subject>Infinitesimals</subject><subject>Leaves</subject><subject>Mathematics</subject><subject>Maximum principle</subject><subject>Riemann manifold</subject><subject>Tensors</subject><subject>Vector fields</subject><issn>0022-2518</issn><issn>1943-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzs1KxDAUBeAgCo6jjyDkBQppfky7lOKMwjBu7Hq4TW6clLTRJBXm7S3o6pzF4eNckU3dSlEprpprsmGM84qrurkldzmPjAmtRLsh_R7jhCV5Q7s4Z_xecDaYaXS0nJEeY5og0G5JP1CWhOvoHKcY4ueFdgFypn6m_TT4sAK7GDwUvzL35MZByPjwn1vS714-utfq8L5_654P1VgzXSpsBmUNB-6YA2sbB04oJrWxTLG1GlYLVFau31EKDbVpUbkBnLZPZgAUW_L45465xHT6Sn6CdDlx2bRKci1-AafDTVM</recordid><startdate>19880701</startdate><enddate>19880701</enddate><creator>ESCOBALES, RICHARD H.</creator><creator>PARKER, PHILLIP E.</creator><general>Department of Mathematics INDIANA UNIVERSITY</general><scope/></search><sort><creationdate>19880701</creationdate><title>Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations</title><author>ESCOBALES, RICHARD H. ; PARKER, PHILLIP E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j107t-e8b5dc2a2f0fadd8faf35047cd050f35c013e5d4022e437a1c9e5fbaf7d6cbae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Conformal mapping</topic><topic>Curvature</topic><topic>Gauss equations</topic><topic>Infinitesimals</topic><topic>Leaves</topic><topic>Mathematics</topic><topic>Maximum principle</topic><topic>Riemann manifold</topic><topic>Tensors</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ESCOBALES, RICHARD H.</creatorcontrib><creatorcontrib>PARKER, PHILLIP E.</creatorcontrib><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ESCOBALES, RICHARD H.</au><au>PARKER, PHILLIP E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations</atitle><jtitle>Indiana University mathematics journal</jtitle><date>1988-07-01</date><risdate>1988</risdate><volume>37</volume><issue>2</issue><spage>389</spage><epage>408</epage><pages>389-408</pages><issn>0022-2518</issn><eissn>1943-5258</eissn><pub>Department of Mathematics INDIANA UNIVERSITY</pub><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2518
ispartof Indiana University mathematics journal, 1988-07, Vol.37 (2), p.389-408
issn 0022-2518
1943-5258
language eng
recordid cdi_jstor_primary_24895427
source JSTOR Archival Journals and Primary Sources Collection
subjects Conformal mapping
Curvature
Gauss equations
Infinitesimals
Leaves
Mathematics
Maximum principle
Riemann manifold
Tensors
Vector fields
title Geometric Consequences of the Normal Curvature Cohomology Class in Umbilic Foliations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Consequences%20of%20the%20Normal%20Curvature%20Cohomology%20Class%20in%20Umbilic%20Foliations&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=ESCOBALES,%20RICHARD%20H.&rft.date=1988-07-01&rft.volume=37&rft.issue=2&rft.spage=389&rft.epage=408&rft.pages=389-408&rft.issn=0022-2518&rft.eissn=1943-5258&rft_id=info:doi/&rft_dat=%3Cjstor%3E24895427%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j107t-e8b5dc2a2f0fadd8faf35047cd050f35c013e5d4022e437a1c9e5fbaf7d6cbae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24895427&rfr_iscdi=true