Loading…
Classifiability and Designs for Sampling
For the problem of classifying observations into one of several distributions conditions are obtained for controlling misclassification errors arbitrarily and uniformly in terms of the structure of the underlying distributions. In order to control errors it is pointed out that it is not necessary in...
Saved in:
Published in: | Sankhya. Series A 1974-07, Vol.36 (3), p.237-250 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 250 |
container_issue | 3 |
container_start_page | 237 |
container_title | Sankhya. Series A |
container_volume | 36 |
creator | Gupta, Somesh Das Kinderman, Albert |
description | For the problem of classifying observations into one of several distributions conditions are obtained for controlling misclassification errors arbitrarily and uniformly in terms of the structure of the underlying distributions. In order to control errors it is pointed out that it is not necessary in some cases to draw samples from all the unknown distributions. Classification into multivariate normal distributions is discussed to illustrate the theories. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25049936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25049936</jstor_id><sourcerecordid>25049936</sourcerecordid><originalsourceid>FETCH-jstor_primary_250499363</originalsourceid><addsrcrecordid>eNpjYeA0MLUw1DU1N4rgYOAqLs4yMDA1N7Qw4WTQcM5JLC7OTMtMTMrMySypVEjMS1FwSS3OTM8rVkjLL1IITswtyMnMS-dhYE1LzClO5YXS3Ayybq4hzh66WcUl-UXxBUWZuYlFlfFGpgYmlpbGZsaE5AEfOitq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classifiability and Designs for Sampling</title><source>JSTOR</source><creator>Gupta, Somesh Das ; Kinderman, Albert</creator><creatorcontrib>Gupta, Somesh Das ; Kinderman, Albert</creatorcontrib><description>For the problem of classifying observations into one of several distributions conditions are obtained for controlling misclassification errors arbitrarily and uniformly in terms of the structure of the underlying distributions. In order to control errors it is pointed out that it is not necessary in some cases to draw samples from all the unknown distributions. Classification into multivariate normal distributions is discussed to illustrate the theories.</description><identifier>ISSN: 0581-572X</identifier><language>eng</language><publisher>Statistical Publishing Society</publisher><subject>Distance functions ; Error rates ; Euclidean space ; Gaussian distributions ; Grants ; Mathematical moments ; Mathematical theorems ; Product distribution ; Random variables ; Sufficient conditions</subject><ispartof>Sankhya. Series A, 1974-07, Vol.36 (3), p.237-250</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25049936$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25049936$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58217,58450</link.rule.ids></links><search><creatorcontrib>Gupta, Somesh Das</creatorcontrib><creatorcontrib>Kinderman, Albert</creatorcontrib><title>Classifiability and Designs for Sampling</title><title>Sankhya. Series A</title><description>For the problem of classifying observations into one of several distributions conditions are obtained for controlling misclassification errors arbitrarily and uniformly in terms of the structure of the underlying distributions. In order to control errors it is pointed out that it is not necessary in some cases to draw samples from all the unknown distributions. Classification into multivariate normal distributions is discussed to illustrate the theories.</description><subject>Distance functions</subject><subject>Error rates</subject><subject>Euclidean space</subject><subject>Gaussian distributions</subject><subject>Grants</subject><subject>Mathematical moments</subject><subject>Mathematical theorems</subject><subject>Product distribution</subject><subject>Random variables</subject><subject>Sufficient conditions</subject><issn>0581-572X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0MLUw1DU1N4rgYOAqLs4yMDA1N7Qw4WTQcM5JLC7OTMtMTMrMySypVEjMS1FwSS3OTM8rVkjLL1IITswtyMnMS-dhYE1LzClO5YXS3Ayybq4hzh66WcUl-UXxBUWZuYlFlfFGpgYmlpbGZsaE5AEfOitq</recordid><startdate>19740701</startdate><enddate>19740701</enddate><creator>Gupta, Somesh Das</creator><creator>Kinderman, Albert</creator><general>Statistical Publishing Society</general><scope/></search><sort><creationdate>19740701</creationdate><title>Classifiability and Designs for Sampling</title><author>Gupta, Somesh Das ; Kinderman, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_250499363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><topic>Distance functions</topic><topic>Error rates</topic><topic>Euclidean space</topic><topic>Gaussian distributions</topic><topic>Grants</topic><topic>Mathematical moments</topic><topic>Mathematical theorems</topic><topic>Product distribution</topic><topic>Random variables</topic><topic>Sufficient conditions</topic><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Somesh Das</creatorcontrib><creatorcontrib>Kinderman, Albert</creatorcontrib><jtitle>Sankhya. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Somesh Das</au><au>Kinderman, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifiability and Designs for Sampling</atitle><jtitle>Sankhya. Series A</jtitle><date>1974-07-01</date><risdate>1974</risdate><volume>36</volume><issue>3</issue><spage>237</spage><epage>250</epage><pages>237-250</pages><issn>0581-572X</issn><abstract>For the problem of classifying observations into one of several distributions conditions are obtained for controlling misclassification errors arbitrarily and uniformly in terms of the structure of the underlying distributions. In order to control errors it is pointed out that it is not necessary in some cases to draw samples from all the unknown distributions. Classification into multivariate normal distributions is discussed to illustrate the theories.</abstract><pub>Statistical Publishing Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0581-572X |
ispartof | Sankhya. Series A, 1974-07, Vol.36 (3), p.237-250 |
issn | 0581-572X |
language | eng |
recordid | cdi_jstor_primary_25049936 |
source | JSTOR |
subjects | Distance functions Error rates Euclidean space Gaussian distributions Grants Mathematical moments Mathematical theorems Product distribution Random variables Sufficient conditions |
title | Classifiability and Designs for Sampling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifiability%20and%20Designs%20for%20Sampling&rft.jtitle=Sankhya.%20Series%20A&rft.au=Gupta,%20Somesh%20Das&rft.date=1974-07-01&rft.volume=36&rft.issue=3&rft.spage=237&rft.epage=250&rft.pages=237-250&rft.issn=0581-572X&rft_id=info:doi/&rft_dat=%3Cjstor%3E25049936%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_250499363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25049936&rfr_iscdi=true |