Loading…

The Hypothesis of Multisample Block Sphericity

The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate n...

Full description

Saved in:
Bibliographic Details
Published in:Sankhya. Series A 1992-06, Vol.54 (2), p.260-270
Main Author: Moschopoulos, Panagis G.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 270
container_issue 2
container_start_page 260
container_title Sankhya. Series A
container_volume 54
creator Moschopoulos, Panagis G.
description The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate normal populations are block-spherical and equal. This paper considers the modified likelihood ratio test for multisample block-sphericity, its moments, and representations for its null and non-null distribution. In particular, it gives a series expansion for the non-null distribution under local alternatives. The paper extends the results in Moschopoulos (1988).
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25050879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25050879</jstor_id><sourcerecordid>25050879</sourcerecordid><originalsourceid>FETCH-LOGICAL-j107t-755e4df0d6f7b9f54aae524d49277a7f1badf8f46a9f805475b72174a275dbbf3</originalsourceid><addsrcrecordid>eNotzLFOwzAQAFAPIFFaPgHJPxBku76eM5YKKFIRQ1upW3WufYrTVIliM-TvGWB627sTMwVOV4Dm9CAec26VAtTOzsTLoYlyOw19aWJOWfYsv366kjLdhi7K166_XOV-aOKYLqlMC3HP1OX49O9cHN_fDptttfv--Nysd1WrFZYKAaINrMKK0dcMliiCscHWBpGQtafAju2KanYKLIJHo9GSQQje83Iunv_eNpd-PA9jutE4nQ0oUA7r5S9qMDwY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Hypothesis of Multisample Block Sphericity</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Moschopoulos, Panagis G.</creator><creatorcontrib>Moschopoulos, Panagis G.</creatorcontrib><description>The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate normal populations are block-spherical and equal. This paper considers the modified likelihood ratio test for multisample block-sphericity, its moments, and representations for its null and non-null distribution. In particular, it gives a series expansion for the non-null distribution under local alternatives. The paper extends the results in Moschopoulos (1988).</description><identifier>ISSN: 0581-572X</identifier><language>eng</language><publisher>Indian Statistical Institute</publisher><subject>Covariance matrices ; Degrees of freedom ; Mathematical functions ; Mathematical moments ; Mathematical theorems ; Maximum likelihood estimators ; Null hypothesis ; Ratios</subject><ispartof>Sankhya. Series A, 1992-06, Vol.54 (2), p.260-270</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25050879$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25050879$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Moschopoulos, Panagis G.</creatorcontrib><title>The Hypothesis of Multisample Block Sphericity</title><title>Sankhya. Series A</title><description>The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate normal populations are block-spherical and equal. This paper considers the modified likelihood ratio test for multisample block-sphericity, its moments, and representations for its null and non-null distribution. In particular, it gives a series expansion for the non-null distribution under local alternatives. The paper extends the results in Moschopoulos (1988).</description><subject>Covariance matrices</subject><subject>Degrees of freedom</subject><subject>Mathematical functions</subject><subject>Mathematical moments</subject><subject>Mathematical theorems</subject><subject>Maximum likelihood estimators</subject><subject>Null hypothesis</subject><subject>Ratios</subject><issn>0581-572X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzLFOwzAQAFAPIFFaPgHJPxBku76eM5YKKFIRQ1upW3WufYrTVIliM-TvGWB627sTMwVOV4Dm9CAec26VAtTOzsTLoYlyOw19aWJOWfYsv366kjLdhi7K166_XOV-aOKYLqlMC3HP1OX49O9cHN_fDptttfv--Nysd1WrFZYKAaINrMKK0dcMliiCscHWBpGQtafAju2KanYKLIJHo9GSQQje83Iunv_eNpd-PA9jutE4nQ0oUA7r5S9qMDwY</recordid><startdate>19920601</startdate><enddate>19920601</enddate><creator>Moschopoulos, Panagis G.</creator><general>Indian Statistical Institute</general><scope/></search><sort><creationdate>19920601</creationdate><title>The Hypothesis of Multisample Block Sphericity</title><author>Moschopoulos, Panagis G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j107t-755e4df0d6f7b9f54aae524d49277a7f1badf8f46a9f805475b72174a275dbbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Covariance matrices</topic><topic>Degrees of freedom</topic><topic>Mathematical functions</topic><topic>Mathematical moments</topic><topic>Mathematical theorems</topic><topic>Maximum likelihood estimators</topic><topic>Null hypothesis</topic><topic>Ratios</topic><toplevel>online_resources</toplevel><creatorcontrib>Moschopoulos, Panagis G.</creatorcontrib><jtitle>Sankhya. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moschopoulos, Panagis G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hypothesis of Multisample Block Sphericity</atitle><jtitle>Sankhya. Series A</jtitle><date>1992-06-01</date><risdate>1992</risdate><volume>54</volume><issue>2</issue><spage>260</spage><epage>270</epage><pages>260-270</pages><issn>0581-572X</issn><abstract>The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate normal populations are block-spherical and equal. This paper considers the modified likelihood ratio test for multisample block-sphericity, its moments, and representations for its null and non-null distribution. In particular, it gives a series expansion for the non-null distribution under local alternatives. The paper extends the results in Moschopoulos (1988).</abstract><pub>Indian Statistical Institute</pub><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0581-572X
ispartof Sankhya. Series A, 1992-06, Vol.54 (2), p.260-270
issn 0581-572X
language eng
recordid cdi_jstor_primary_25050879
source JSTOR Archival Journals and Primary Sources Collection
subjects Covariance matrices
Degrees of freedom
Mathematical functions
Mathematical moments
Mathematical theorems
Maximum likelihood estimators
Null hypothesis
Ratios
title The Hypothesis of Multisample Block Sphericity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hypothesis%20of%20Multisample%20Block%20Sphericity&rft.jtitle=Sankhya.%20Series%20A&rft.au=Moschopoulos,%20Panagis%20G.&rft.date=1992-06-01&rft.volume=54&rft.issue=2&rft.spage=260&rft.epage=270&rft.pages=260-270&rft.issn=0581-572X&rft_id=info:doi/&rft_dat=%3Cjstor%3E25050879%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j107t-755e4df0d6f7b9f54aae524d49277a7f1badf8f46a9f805475b72174a275dbbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25050879&rfr_iscdi=true