Loading…
The Hypothesis of Multisample Block Sphericity
The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate n...
Saved in:
Published in: | Sankhya. Series A 1992-06, Vol.54 (2), p.260-270 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 270 |
container_issue | 2 |
container_start_page | 260 |
container_title | Sankhya. Series A |
container_volume | 54 |
creator | Moschopoulos, Panagis G. |
description | The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate normal populations are block-spherical and equal. This paper considers the modified likelihood ratio test for multisample block-sphericity, its moments, and representations for its null and non-null distribution. In particular, it gives a series expansion for the non-null distribution under local alternatives. The paper extends the results in Moschopoulos (1988). |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25050879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25050879</jstor_id><sourcerecordid>25050879</sourcerecordid><originalsourceid>FETCH-LOGICAL-j107t-755e4df0d6f7b9f54aae524d49277a7f1badf8f46a9f805475b72174a275dbbf3</originalsourceid><addsrcrecordid>eNotzLFOwzAQAFAPIFFaPgHJPxBku76eM5YKKFIRQ1upW3WufYrTVIliM-TvGWB627sTMwVOV4Dm9CAec26VAtTOzsTLoYlyOw19aWJOWfYsv366kjLdhi7K166_XOV-aOKYLqlMC3HP1OX49O9cHN_fDptttfv--Nysd1WrFZYKAaINrMKK0dcMliiCscHWBpGQtafAju2KanYKLIJHo9GSQQje83Iunv_eNpd-PA9jutE4nQ0oUA7r5S9qMDwY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Hypothesis of Multisample Block Sphericity</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Moschopoulos, Panagis G.</creator><creatorcontrib>Moschopoulos, Panagis G.</creatorcontrib><description>The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate normal populations are block-spherical and equal. This paper considers the modified likelihood ratio test for multisample block-sphericity, its moments, and representations for its null and non-null distribution. In particular, it gives a series expansion for the non-null distribution under local alternatives. The paper extends the results in Moschopoulos (1988).</description><identifier>ISSN: 0581-572X</identifier><language>eng</language><publisher>Indian Statistical Institute</publisher><subject>Covariance matrices ; Degrees of freedom ; Mathematical functions ; Mathematical moments ; Mathematical theorems ; Maximum likelihood estimators ; Null hypothesis ; Ratios</subject><ispartof>Sankhya. Series A, 1992-06, Vol.54 (2), p.260-270</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25050879$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25050879$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Moschopoulos, Panagis G.</creatorcontrib><title>The Hypothesis of Multisample Block Sphericity</title><title>Sankhya. Series A</title><description>The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate normal populations are block-spherical and equal. This paper considers the modified likelihood ratio test for multisample block-sphericity, its moments, and representations for its null and non-null distribution. In particular, it gives a series expansion for the non-null distribution under local alternatives. The paper extends the results in Moschopoulos (1988).</description><subject>Covariance matrices</subject><subject>Degrees of freedom</subject><subject>Mathematical functions</subject><subject>Mathematical moments</subject><subject>Mathematical theorems</subject><subject>Maximum likelihood estimators</subject><subject>Null hypothesis</subject><subject>Ratios</subject><issn>0581-572X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzLFOwzAQAFAPIFFaPgHJPxBku76eM5YKKFIRQ1upW3WufYrTVIliM-TvGWB627sTMwVOV4Dm9CAec26VAtTOzsTLoYlyOw19aWJOWfYsv366kjLdhi7K166_XOV-aOKYLqlMC3HP1OX49O9cHN_fDptttfv--Nysd1WrFZYKAaINrMKK0dcMliiCscHWBpGQtafAju2KanYKLIJHo9GSQQje83Iunv_eNpd-PA9jutE4nQ0oUA7r5S9qMDwY</recordid><startdate>19920601</startdate><enddate>19920601</enddate><creator>Moschopoulos, Panagis G.</creator><general>Indian Statistical Institute</general><scope/></search><sort><creationdate>19920601</creationdate><title>The Hypothesis of Multisample Block Sphericity</title><author>Moschopoulos, Panagis G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j107t-755e4df0d6f7b9f54aae524d49277a7f1badf8f46a9f805475b72174a275dbbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Covariance matrices</topic><topic>Degrees of freedom</topic><topic>Mathematical functions</topic><topic>Mathematical moments</topic><topic>Mathematical theorems</topic><topic>Maximum likelihood estimators</topic><topic>Null hypothesis</topic><topic>Ratios</topic><toplevel>online_resources</toplevel><creatorcontrib>Moschopoulos, Panagis G.</creatorcontrib><jtitle>Sankhya. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moschopoulos, Panagis G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hypothesis of Multisample Block Sphericity</atitle><jtitle>Sankhya. Series A</jtitle><date>1992-06-01</date><risdate>1992</risdate><volume>54</volume><issue>2</issue><spage>260</spage><epage>270</epage><pages>260-270</pages><issn>0581-572X</issn><abstract>The p × p real matrix Σ is called block-spherical if it is diagonal with q blocks, 1 ≤ q ≤ p each containing$p_{i}$elements equal to$\sigma _{i}^{2},\,i=1,..,q,p_{1}+p_{2}+..+p_{q}=p$. The hypothesis of multisample block-sphericity is that k covariance matrices$\boldsymbol{\Sigma}_{j}$of p-variate normal populations are block-spherical and equal. This paper considers the modified likelihood ratio test for multisample block-sphericity, its moments, and representations for its null and non-null distribution. In particular, it gives a series expansion for the non-null distribution under local alternatives. The paper extends the results in Moschopoulos (1988).</abstract><pub>Indian Statistical Institute</pub><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0581-572X |
ispartof | Sankhya. Series A, 1992-06, Vol.54 (2), p.260-270 |
issn | 0581-572X |
language | eng |
recordid | cdi_jstor_primary_25050879 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Covariance matrices Degrees of freedom Mathematical functions Mathematical moments Mathematical theorems Maximum likelihood estimators Null hypothesis Ratios |
title | The Hypothesis of Multisample Block Sphericity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hypothesis%20of%20Multisample%20Block%20Sphericity&rft.jtitle=Sankhya.%20Series%20A&rft.au=Moschopoulos,%20Panagis%20G.&rft.date=1992-06-01&rft.volume=54&rft.issue=2&rft.spage=260&rft.epage=270&rft.pages=260-270&rft.issn=0581-572X&rft_id=info:doi/&rft_dat=%3Cjstor%3E25050879%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j107t-755e4df0d6f7b9f54aae524d49277a7f1badf8f46a9f805475b72174a275dbbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25050879&rfr_iscdi=true |