Loading…
Grouping and Rank Estimators in EVMS
This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly be...
Saved in:
Published in: | Sankhyā. Series B 1984-04, Vol.46 (1), p.90-107 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 107 |
container_issue | 1 |
container_start_page | 90 |
container_title | Sankhyā. Series B |
container_volume | 46 |
creator | Bhaumik, Mrinal Pal, Manoranjan |
description | This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly better than the other estimators in the sense of minimizing asymptotic variance within the class of estimators. Second, to prove an important result of the paper, it is assumed that the ranks of the true values of the regressor are known from an independent source. In this case, an optimum minimum variance rank estimator is found. The optimisation of the class of estimators proposed in this paper leads to a simple and elegant approach which can easily be applied in other similar situations. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25052329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25052329</jstor_id><sourcerecordid>25052329</sourcerecordid><originalsourceid>FETCH-jstor_primary_250523293</originalsourceid><addsrcrecordid>eNpjYeA0MLUw1DU1N7bgYOAqLs4yMDA1N7Qw5WRQcS_KLy3IzEtXSMxLUQhKzMtWcC0uycxNLMkvKlbIzFNwDfMN5mFgTUvMKU7lhdLcDLJuriHOHrpZxUBl8QVFQPVFlfFGpgamRsZGlsaE5AEE8yj9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grouping and Rank Estimators in EVMS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Bhaumik, Mrinal ; Pal, Manoranjan</creator><creatorcontrib>Bhaumik, Mrinal ; Pal, Manoranjan</creatorcontrib><description>This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly better than the other estimators in the sense of minimizing asymptotic variance within the class of estimators. Second, to prove an important result of the paper, it is assumed that the ranks of the true values of the regressor are known from an independent source. In this case, an optimum minimum variance rank estimator is found. The optimisation of the class of estimators proposed in this paper leads to a simple and elegant approach which can easily be applied in other similar situations.</description><identifier>ISSN: 0581-5738</identifier><language>eng</language><publisher>Statistical Publishing Society</publisher><subject>Consistent estimators ; Estimation bias ; Estimation methods ; Estimators ; Instrumental variables estimation ; Least squares ; Mathematical independent variables ; Regression analysis ; Regression coefficients</subject><ispartof>Sankhyā. Series B, 1984-04, Vol.46 (1), p.90-107</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25052329$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25052329$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Bhaumik, Mrinal</creatorcontrib><creatorcontrib>Pal, Manoranjan</creatorcontrib><title>Grouping and Rank Estimators in EVMS</title><title>Sankhyā. Series B</title><description>This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly better than the other estimators in the sense of minimizing asymptotic variance within the class of estimators. Second, to prove an important result of the paper, it is assumed that the ranks of the true values of the regressor are known from an independent source. In this case, an optimum minimum variance rank estimator is found. The optimisation of the class of estimators proposed in this paper leads to a simple and elegant approach which can easily be applied in other similar situations.</description><subject>Consistent estimators</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Instrumental variables estimation</subject><subject>Least squares</subject><subject>Mathematical independent variables</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><issn>0581-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0MLUw1DU1N7bgYOAqLs4yMDA1N7Qw5WRQcS_KLy3IzEtXSMxLUQhKzMtWcC0uycxNLMkvKlbIzFNwDfMN5mFgTUvMKU7lhdLcDLJuriHOHrpZxUBl8QVFQPVFlfFGpgamRsZGlsaE5AEE8yj9</recordid><startdate>19840401</startdate><enddate>19840401</enddate><creator>Bhaumik, Mrinal</creator><creator>Pal, Manoranjan</creator><general>Statistical Publishing Society</general><scope/></search><sort><creationdate>19840401</creationdate><title>Grouping and Rank Estimators in EVMS</title><author>Bhaumik, Mrinal ; Pal, Manoranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_250523293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Consistent estimators</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Instrumental variables estimation</topic><topic>Least squares</topic><topic>Mathematical independent variables</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhaumik, Mrinal</creatorcontrib><creatorcontrib>Pal, Manoranjan</creatorcontrib><jtitle>Sankhyā. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhaumik, Mrinal</au><au>Pal, Manoranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grouping and Rank Estimators in EVMS</atitle><jtitle>Sankhyā. Series B</jtitle><date>1984-04-01</date><risdate>1984</risdate><volume>46</volume><issue>1</issue><spage>90</spage><epage>107</epage><pages>90-107</pages><issn>0581-5738</issn><abstract>This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly better than the other estimators in the sense of minimizing asymptotic variance within the class of estimators. Second, to prove an important result of the paper, it is assumed that the ranks of the true values of the regressor are known from an independent source. In this case, an optimum minimum variance rank estimator is found. The optimisation of the class of estimators proposed in this paper leads to a simple and elegant approach which can easily be applied in other similar situations.</abstract><pub>Statistical Publishing Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0581-5738 |
ispartof | Sankhyā. Series B, 1984-04, Vol.46 (1), p.90-107 |
issn | 0581-5738 |
language | eng |
recordid | cdi_jstor_primary_25052329 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Consistent estimators Estimation bias Estimation methods Estimators Instrumental variables estimation Least squares Mathematical independent variables Regression analysis Regression coefficients |
title | Grouping and Rank Estimators in EVMS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grouping%20and%20Rank%20Estimators%20in%20EVMS&rft.jtitle=Sankhya%CC%84.%20Series%20B&rft.au=Bhaumik,%20Mrinal&rft.date=1984-04-01&rft.volume=46&rft.issue=1&rft.spage=90&rft.epage=107&rft.pages=90-107&rft.issn=0581-5738&rft_id=info:doi/&rft_dat=%3Cjstor%3E25052329%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_250523293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25052329&rfr_iscdi=true |