Loading…

Grouping and Rank Estimators in EVMS

This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly be...

Full description

Saved in:
Bibliographic Details
Published in:Sankhyā. Series B 1984-04, Vol.46 (1), p.90-107
Main Authors: Bhaumik, Mrinal, Pal, Manoranjan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 107
container_issue 1
container_start_page 90
container_title Sankhyā. Series B
container_volume 46
creator Bhaumik, Mrinal
Pal, Manoranjan
description This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly better than the other estimators in the sense of minimizing asymptotic variance within the class of estimators. Second, to prove an important result of the paper, it is assumed that the ranks of the true values of the regressor are known from an independent source. In this case, an optimum minimum variance rank estimator is found. The optimisation of the class of estimators proposed in this paper leads to a simple and elegant approach which can easily be applied in other similar situations.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25052329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25052329</jstor_id><sourcerecordid>25052329</sourcerecordid><originalsourceid>FETCH-jstor_primary_250523293</originalsourceid><addsrcrecordid>eNpjYeA0MLUw1DU1N7bgYOAqLs4yMDA1N7Qw5WRQcS_KLy3IzEtXSMxLUQhKzMtWcC0uycxNLMkvKlbIzFNwDfMN5mFgTUvMKU7lhdLcDLJuriHOHrpZxUBl8QVFQPVFlfFGpgamRsZGlsaE5AEE8yj9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grouping and Rank Estimators in EVMS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Bhaumik, Mrinal ; Pal, Manoranjan</creator><creatorcontrib>Bhaumik, Mrinal ; Pal, Manoranjan</creatorcontrib><description>This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly better than the other estimators in the sense of minimizing asymptotic variance within the class of estimators. Second, to prove an important result of the paper, it is assumed that the ranks of the true values of the regressor are known from an independent source. In this case, an optimum minimum variance rank estimator is found. The optimisation of the class of estimators proposed in this paper leads to a simple and elegant approach which can easily be applied in other similar situations.</description><identifier>ISSN: 0581-5738</identifier><language>eng</language><publisher>Statistical Publishing Society</publisher><subject>Consistent estimators ; Estimation bias ; Estimation methods ; Estimators ; Instrumental variables estimation ; Least squares ; Mathematical independent variables ; Regression analysis ; Regression coefficients</subject><ispartof>Sankhyā. Series B, 1984-04, Vol.46 (1), p.90-107</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25052329$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25052329$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Bhaumik, Mrinal</creatorcontrib><creatorcontrib>Pal, Manoranjan</creatorcontrib><title>Grouping and Rank Estimators in EVMS</title><title>Sankhyā. Series B</title><description>This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly better than the other estimators in the sense of minimizing asymptotic variance within the class of estimators. Second, to prove an important result of the paper, it is assumed that the ranks of the true values of the regressor are known from an independent source. In this case, an optimum minimum variance rank estimator is found. The optimisation of the class of estimators proposed in this paper leads to a simple and elegant approach which can easily be applied in other similar situations.</description><subject>Consistent estimators</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Instrumental variables estimation</subject><subject>Least squares</subject><subject>Mathematical independent variables</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><issn>0581-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0MLUw1DU1N7bgYOAqLs4yMDA1N7Qw5WRQcS_KLy3IzEtXSMxLUQhKzMtWcC0uycxNLMkvKlbIzFNwDfMN5mFgTUvMKU7lhdLcDLJuriHOHrpZxUBl8QVFQPVFlfFGpgamRsZGlsaE5AEE8yj9</recordid><startdate>19840401</startdate><enddate>19840401</enddate><creator>Bhaumik, Mrinal</creator><creator>Pal, Manoranjan</creator><general>Statistical Publishing Society</general><scope/></search><sort><creationdate>19840401</creationdate><title>Grouping and Rank Estimators in EVMS</title><author>Bhaumik, Mrinal ; Pal, Manoranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_250523293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Consistent estimators</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Instrumental variables estimation</topic><topic>Least squares</topic><topic>Mathematical independent variables</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhaumik, Mrinal</creatorcontrib><creatorcontrib>Pal, Manoranjan</creatorcontrib><jtitle>Sankhyā. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhaumik, Mrinal</au><au>Pal, Manoranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grouping and Rank Estimators in EVMS</atitle><jtitle>Sankhyā. Series B</jtitle><date>1984-04-01</date><risdate>1984</risdate><volume>46</volume><issue>1</issue><spage>90</spage><epage>107</epage><pages>90-107</pages><issn>0581-5738</issn><abstract>This paper first discusses various grouping/rank estimation methods in the EVMs. In doing so it gives an exposition of some of the recent work done in this area and compares them. An improved estimator is proposed and is compared with other estimators. It is shown that this estimator is uniformly better than the other estimators in the sense of minimizing asymptotic variance within the class of estimators. Second, to prove an important result of the paper, it is assumed that the ranks of the true values of the regressor are known from an independent source. In this case, an optimum minimum variance rank estimator is found. The optimisation of the class of estimators proposed in this paper leads to a simple and elegant approach which can easily be applied in other similar situations.</abstract><pub>Statistical Publishing Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0581-5738
ispartof Sankhyā. Series B, 1984-04, Vol.46 (1), p.90-107
issn 0581-5738
language eng
recordid cdi_jstor_primary_25052329
source JSTOR Archival Journals and Primary Sources Collection
subjects Consistent estimators
Estimation bias
Estimation methods
Estimators
Instrumental variables estimation
Least squares
Mathematical independent variables
Regression analysis
Regression coefficients
title Grouping and Rank Estimators in EVMS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grouping%20and%20Rank%20Estimators%20in%20EVMS&rft.jtitle=Sankhya%CC%84.%20Series%20B&rft.au=Bhaumik,%20Mrinal&rft.date=1984-04-01&rft.volume=46&rft.issue=1&rft.spage=90&rft.epage=107&rft.pages=90-107&rft.issn=0581-5738&rft_id=info:doi/&rft_dat=%3Cjstor%3E25052329%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_250523293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25052329&rfr_iscdi=true