Loading…
Consistency of Dykstra-Laud Priors
We consider priors on increasing hazard rates induced by processes with independent increments and increasing sample paths. These generalize a construction of the Dykstra-Laud prior. We establish the$L^{1}\text{-support}$and then describe a class of distributions for which weak and$L^{1}$consistency...
Saved in:
Published in: | Sankhyā (2003) 2003-05, Vol.65 (2), p.464-481 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 481 |
container_issue | 2 |
container_start_page | 464 |
container_title | Sankhyā (2003) |
container_volume | 65 |
creator | Drăghici, L. Ramamoorthi, R. V. |
description | We consider priors on increasing hazard rates induced by processes with independent increments and increasing sample paths. These generalize a construction of the Dykstra-Laud prior. We establish the$L^{1}\text{-support}$and then describe a class of distributions for which weak and$L^{1}$consistency of the posterior hold. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25053274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25053274</jstor_id><sourcerecordid>25053274</sourcerecordid><originalsourceid>FETCH-jstor_primary_250532743</originalsourceid><addsrcrecordid>eNpjYeA0sDQ30jU3MzfkYOAqLs4yMDCyNDQw5mRQcs7PK84sLknNS65UyE9TcKnMLi4pStT1SSxNUQgoyswvKuZhYE1LzClO5YXS3Ayybq4hzh66WcUl-UXxBUWZuYlFlfFGpgamxkbmJsaE5AHfwCjm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Consistency of Dykstra-Laud Priors</title><source>JSTOR Archival Journals</source><creator>Drăghici, L. ; Ramamoorthi, R. V.</creator><creatorcontrib>Drăghici, L. ; Ramamoorthi, R. V.</creatorcontrib><description>We consider priors on increasing hazard rates induced by processes with independent increments and increasing sample paths. These generalize a construction of the Dykstra-Laud prior. We establish the$L^{1}\text{-support}$and then describe a class of distributions for which weak and$L^{1}$consistency of the posterior hold.</description><identifier>ISSN: 0972-7671</identifier><language>eng</language><publisher>Indian Statistical Institute</publisher><subject>Asymptotics ; Density ; Integers ; Random variables ; Stochastic processes ; Topology</subject><ispartof>Sankhyā (2003), 2003-05, Vol.65 (2), p.464-481</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25053274$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25053274$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Drăghici, L.</creatorcontrib><creatorcontrib>Ramamoorthi, R. V.</creatorcontrib><title>Consistency of Dykstra-Laud Priors</title><title>Sankhyā (2003)</title><description>We consider priors on increasing hazard rates induced by processes with independent increments and increasing sample paths. These generalize a construction of the Dykstra-Laud prior. We establish the$L^{1}\text{-support}$and then describe a class of distributions for which weak and$L^{1}$consistency of the posterior hold.</description><subject>Asymptotics</subject><subject>Density</subject><subject>Integers</subject><subject>Random variables</subject><subject>Stochastic processes</subject><subject>Topology</subject><issn>0972-7671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0sDQ30jU3MzfkYOAqLs4yMDCyNDQw5mRQcs7PK84sLknNS65UyE9TcKnMLi4pStT1SSxNUQgoyswvKuZhYE1LzClO5YXS3Ayybq4hzh66WcUl-UXxBUWZuYlFlfFGpgamxkbmJsaE5AHfwCjm</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Drăghici, L.</creator><creator>Ramamoorthi, R. V.</creator><general>Indian Statistical Institute</general><scope/></search><sort><creationdate>20030501</creationdate><title>Consistency of Dykstra-Laud Priors</title><author>Drăghici, L. ; Ramamoorthi, R. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_250532743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Asymptotics</topic><topic>Density</topic><topic>Integers</topic><topic>Random variables</topic><topic>Stochastic processes</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Drăghici, L.</creatorcontrib><creatorcontrib>Ramamoorthi, R. V.</creatorcontrib><jtitle>Sankhyā (2003)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drăghici, L.</au><au>Ramamoorthi, R. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistency of Dykstra-Laud Priors</atitle><jtitle>Sankhyā (2003)</jtitle><date>2003-05-01</date><risdate>2003</risdate><volume>65</volume><issue>2</issue><spage>464</spage><epage>481</epage><pages>464-481</pages><issn>0972-7671</issn><abstract>We consider priors on increasing hazard rates induced by processes with independent increments and increasing sample paths. These generalize a construction of the Dykstra-Laud prior. We establish the$L^{1}\text{-support}$and then describe a class of distributions for which weak and$L^{1}$consistency of the posterior hold.</abstract><pub>Indian Statistical Institute</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0972-7671 |
ispartof | Sankhyā (2003), 2003-05, Vol.65 (2), p.464-481 |
issn | 0972-7671 |
language | eng |
recordid | cdi_jstor_primary_25053274 |
source | JSTOR Archival Journals |
subjects | Asymptotics Density Integers Random variables Stochastic processes Topology |
title | Consistency of Dykstra-Laud Priors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistency%20of%20Dykstra-Laud%20Priors&rft.jtitle=Sankhy%C4%81%20(2003)&rft.au=Dr%C4%83ghici,%20L.&rft.date=2003-05-01&rft.volume=65&rft.issue=2&rft.spage=464&rft.epage=481&rft.pages=464-481&rft.issn=0972-7671&rft_id=info:doi/&rft_dat=%3Cjstor%3E25053274%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_250532743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25053274&rfr_iscdi=true |