Loading…
An EM-Like Algorithm for Semi- and Nonparametric Estimation in Multivariate Mixtures
We propose an algorithm for nonparametric estimation for finite mixtures of multivariate random vectors that strongly resembles a true EM algorithm. The vectors are assumed to have independent coordinates conditional upon knowing from which mixture component they come, but otherwise their density fu...
Saved in:
Published in: | Journal of computational and graphical statistics 2009-06, Vol.18 (2), p.505-526 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-331d67e02559865fd4cb05267eb18aa68518961eef19156bfb127438fcef119e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-331d67e02559865fd4cb05267eb18aa68518961eef19156bfb127438fcef119e3 |
container_end_page | 526 |
container_issue | 2 |
container_start_page | 505 |
container_title | Journal of computational and graphical statistics |
container_volume | 18 |
creator | Benaglia, Tatiana Chauveau, Didier Hunter, David R. |
description | We propose an algorithm for nonparametric estimation for finite mixtures of multivariate random vectors that strongly resembles a true EM algorithm. The vectors are assumed to have independent coordinates conditional upon knowing from which mixture component they come, but otherwise their density functions are completely unspecified. Sometimes, the density functions may be partially specified by Euclidean parameters, a case we call semiparametric. Our algorithm is much more flexible and easily applicable than existing algorithms in the literature; it can be extended to any number of mixture components and any number of vector coordinates of the multivariate observations. Thus it may be applied even in situations where the model is not identifiable, so care is called for when using it in situations for which identifiability is difficult to establish conclusively. Our algorithm yields much smaller mean integrated squared errors than an alternative algorithm in a simulation study. In another example using a real dataset, it provides new insights that extend previous analyses. Finally, we present two different variations of our algorithm, one stochastic and one deterministic, and find anecdotal evidence that there is not a great deal of difference between the performance of these two variants. The computer code and data used in this article are available online. |
doi_str_mv | 10.1198/jcgs.2009.07175 |
format | article |
fullrecord | <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_jstor_primary_25651257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25651257</jstor_id><sourcerecordid>25651257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-331d67e02559865fd4cb05267eb18aa68518961eef19156bfb127438fcef119e3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEEqUwMyFZ7Gl9Tm0nbFVVPqQWBspsOYlTHJK42A7Q_x6XIDamO7179073i6JLwBOALJ3WxdZNCMbZBHPg9CgaAU14TDjQ49BjBnHKMD6NzpyrMcbAMj6KNvMOLdfxSr8pNG-2xmr_2qLKWPSsWh0j2ZXo0XQ7aWWrvNUFWjqvW-m16ZDu0LpvvP6QVkuv0Fp_-d4qdx6dVLJx6uK3jqOX2-VmcR-vnu4eFvNVXCQp8XGSQMm4woTSLGW0KmdFjikJUg6plCylkGYMlKogA8ryKgfCZ0laFUGBTCXj6HrI3Vnz3ivnRW1624WTgiSU0xlhEEzTwVRY45xVldjZ8IDdC8DiQE4cyIkDOfFDLmxcDRu188b-2QllFAjlYX4zzHUXQLXy09imFF7uG2MrK7tCO5H8F_4Nhgl-Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235754261</pqid></control><display><type>article</type><title>An EM-Like Algorithm for Semi- and Nonparametric Estimation in Multivariate Mixtures</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Benaglia, Tatiana ; Chauveau, Didier ; Hunter, David R.</creator><creatorcontrib>Benaglia, Tatiana ; Chauveau, Didier ; Hunter, David R.</creatorcontrib><description>We propose an algorithm for nonparametric estimation for finite mixtures of multivariate random vectors that strongly resembles a true EM algorithm. The vectors are assumed to have independent coordinates conditional upon knowing from which mixture component they come, but otherwise their density functions are completely unspecified. Sometimes, the density functions may be partially specified by Euclidean parameters, a case we call semiparametric. Our algorithm is much more flexible and easily applicable than existing algorithms in the literature; it can be extended to any number of mixture components and any number of vector coordinates of the multivariate observations. Thus it may be applied even in situations where the model is not identifiable, so care is called for when using it in situations for which identifiability is difficult to establish conclusively. Our algorithm yields much smaller mean integrated squared errors than an alternative algorithm in a simulation study. In another example using a real dataset, it provides new insights that extend previous analyses. Finally, we present two different variations of our algorithm, one stochastic and one deterministic, and find anecdotal evidence that there is not a great deal of difference between the performance of these two variants. The computer code and data used in this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1198/jcgs.2009.07175</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Algorithms ; Coordinate systems ; Datasets ; Density estimation ; EM algorithm ; EM-Type Algorithms ; Estimating techniques ; Estimation methods ; Euclidean space ; Identifiability ; Kernel density estimation ; Modeling ; Multivariate analysis ; Multivariate mixture ; Nonparametric mixture ; Parametric models ; Product labeling ; Sample size ; Simulation ; Stochastic models ; Studies</subject><ispartof>Journal of computational and graphical statistics, 2009-06, Vol.18 (2), p.505-526</ispartof><rights>2009 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2009</rights><rights>2009 The American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America</rights><rights>Copyright American Statistical Association Jun 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-331d67e02559865fd4cb05267eb18aa68518961eef19156bfb127438fcef119e3</citedby><cites>FETCH-LOGICAL-c382t-331d67e02559865fd4cb05267eb18aa68518961eef19156bfb127438fcef119e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25651257$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25651257$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Benaglia, Tatiana</creatorcontrib><creatorcontrib>Chauveau, Didier</creatorcontrib><creatorcontrib>Hunter, David R.</creatorcontrib><title>An EM-Like Algorithm for Semi- and Nonparametric Estimation in Multivariate Mixtures</title><title>Journal of computational and graphical statistics</title><description>We propose an algorithm for nonparametric estimation for finite mixtures of multivariate random vectors that strongly resembles a true EM algorithm. The vectors are assumed to have independent coordinates conditional upon knowing from which mixture component they come, but otherwise their density functions are completely unspecified. Sometimes, the density functions may be partially specified by Euclidean parameters, a case we call semiparametric. Our algorithm is much more flexible and easily applicable than existing algorithms in the literature; it can be extended to any number of mixture components and any number of vector coordinates of the multivariate observations. Thus it may be applied even in situations where the model is not identifiable, so care is called for when using it in situations for which identifiability is difficult to establish conclusively. Our algorithm yields much smaller mean integrated squared errors than an alternative algorithm in a simulation study. In another example using a real dataset, it provides new insights that extend previous analyses. Finally, we present two different variations of our algorithm, one stochastic and one deterministic, and find anecdotal evidence that there is not a great deal of difference between the performance of these two variants. The computer code and data used in this article are available online.</description><subject>Algorithms</subject><subject>Coordinate systems</subject><subject>Datasets</subject><subject>Density estimation</subject><subject>EM algorithm</subject><subject>EM-Type Algorithms</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Euclidean space</subject><subject>Identifiability</subject><subject>Kernel density estimation</subject><subject>Modeling</subject><subject>Multivariate analysis</subject><subject>Multivariate mixture</subject><subject>Nonparametric mixture</subject><subject>Parametric models</subject><subject>Product labeling</subject><subject>Sample size</subject><subject>Simulation</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxSMEEqUwMyFZ7Gl9Tm0nbFVVPqQWBspsOYlTHJK42A7Q_x6XIDamO7179073i6JLwBOALJ3WxdZNCMbZBHPg9CgaAU14TDjQ49BjBnHKMD6NzpyrMcbAMj6KNvMOLdfxSr8pNG-2xmr_2qLKWPSsWh0j2ZXo0XQ7aWWrvNUFWjqvW-m16ZDu0LpvvP6QVkuv0Fp_-d4qdx6dVLJx6uK3jqOX2-VmcR-vnu4eFvNVXCQp8XGSQMm4woTSLGW0KmdFjikJUg6plCylkGYMlKogA8ryKgfCZ0laFUGBTCXj6HrI3Vnz3ivnRW1624WTgiSU0xlhEEzTwVRY45xVldjZ8IDdC8DiQE4cyIkDOfFDLmxcDRu188b-2QllFAjlYX4zzHUXQLXy09imFF7uG2MrK7tCO5H8F_4Nhgl-Nw</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Benaglia, Tatiana</creator><creator>Chauveau, Didier</creator><creator>Hunter, David R.</creator><general>Taylor & Francis</general><general>JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20090601</creationdate><title>An EM-Like Algorithm for Semi- and Nonparametric Estimation in Multivariate Mixtures</title><author>Benaglia, Tatiana ; Chauveau, Didier ; Hunter, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-331d67e02559865fd4cb05267eb18aa68518961eef19156bfb127438fcef119e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Coordinate systems</topic><topic>Datasets</topic><topic>Density estimation</topic><topic>EM algorithm</topic><topic>EM-Type Algorithms</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Euclidean space</topic><topic>Identifiability</topic><topic>Kernel density estimation</topic><topic>Modeling</topic><topic>Multivariate analysis</topic><topic>Multivariate mixture</topic><topic>Nonparametric mixture</topic><topic>Parametric models</topic><topic>Product labeling</topic><topic>Sample size</topic><topic>Simulation</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benaglia, Tatiana</creatorcontrib><creatorcontrib>Chauveau, Didier</creatorcontrib><creatorcontrib>Hunter, David R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benaglia, Tatiana</au><au>Chauveau, Didier</au><au>Hunter, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An EM-Like Algorithm for Semi- and Nonparametric Estimation in Multivariate Mixtures</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>18</volume><issue>2</issue><spage>505</spage><epage>526</epage><pages>505-526</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>We propose an algorithm for nonparametric estimation for finite mixtures of multivariate random vectors that strongly resembles a true EM algorithm. The vectors are assumed to have independent coordinates conditional upon knowing from which mixture component they come, but otherwise their density functions are completely unspecified. Sometimes, the density functions may be partially specified by Euclidean parameters, a case we call semiparametric. Our algorithm is much more flexible and easily applicable than existing algorithms in the literature; it can be extended to any number of mixture components and any number of vector coordinates of the multivariate observations. Thus it may be applied even in situations where the model is not identifiable, so care is called for when using it in situations for which identifiability is difficult to establish conclusively. Our algorithm yields much smaller mean integrated squared errors than an alternative algorithm in a simulation study. In another example using a real dataset, it provides new insights that extend previous analyses. Finally, we present two different variations of our algorithm, one stochastic and one deterministic, and find anecdotal evidence that there is not a great deal of difference between the performance of these two variants. The computer code and data used in this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1198/jcgs.2009.07175</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8600 |
ispartof | Journal of computational and graphical statistics, 2009-06, Vol.18 (2), p.505-526 |
issn | 1061-8600 1537-2715 |
language | eng |
recordid | cdi_jstor_primary_25651257 |
source | JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection |
subjects | Algorithms Coordinate systems Datasets Density estimation EM algorithm EM-Type Algorithms Estimating techniques Estimation methods Euclidean space Identifiability Kernel density estimation Modeling Multivariate analysis Multivariate mixture Nonparametric mixture Parametric models Product labeling Sample size Simulation Stochastic models Studies |
title | An EM-Like Algorithm for Semi- and Nonparametric Estimation in Multivariate Mixtures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20EM-Like%20Algorithm%20for%20Semi-%20and%20Nonparametric%20Estimation%20in%20Multivariate%20Mixtures&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Benaglia,%20Tatiana&rft.date=2009-06-01&rft.volume=18&rft.issue=2&rft.spage=505&rft.epage=526&rft.pages=505-526&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1198/jcgs.2009.07175&rft_dat=%3Cjstor_infor%3E25651257%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-331d67e02559865fd4cb05267eb18aa68518961eef19156bfb127438fcef119e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=235754261&rft_id=info:pmid/&rft_jstor_id=25651257&rfr_iscdi=true |