Loading…

Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites

The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including speci...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (45), p.19219-19224
Main Authors: Baños, Benito, Villar, Laurentino, Salas, Margarita, de Vega, Miguel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3
cites cdi_FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3
container_end_page 19224
container_issue 45
container_start_page 19219
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Baños, Benito
Villar, Laurentino
Salas, Margarita
de Vega, Miguel
description The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX Bs ) that, along with polymerization and 3'–5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'–5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX Bs enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way.
doi_str_mv 10.1073/pnas.1013603107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_25748655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748655</jstor_id><sourcerecordid>25748655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3</originalsourceid><addsrcrecordid>eNpdkctuEzEUhi0EoqGwZgWy2AASIb7PeIMUyq1SBSxAYmd5PJ7WkWNPbU-l8Cq8LB4lNMDK9vF3_nP5AXiM0WuMGroag871hqlAtAbugAVGEi8Fk-guWCBEmmXLCDsBD3LeIIQkb9F9cEKQbJikZAF-nYeSXMjOQD1O9ebMSo-75Launx_wxfrrS2hDH8NkvNXZQm2Ku3FlV6O68zbDt9o476cM89QV512G7z6v4Rj9bmvTnPEDlgiTNfEyuJ_2FXTBuFxPHXo4TKlc2VS_R-0S1J2ee8mu2PwQ3Bu0z_bR4TwF3z-8_3b2aXnx5eP52fpiaZhsy9JgqQfeU9G33IiBICy5NBhjLpjl1OBG1lUZwulgZUdsyyUTRmBSa6G-0_QUvNnrjlO3tb2xdSXaq7EuQaeditqpf3-Cu1KX8UYR2TLMWBV4fhBI8Xqyuaity8Z6r4ONU1YtlaLFDReVfPYfuYlTCnU61QgqBK8WVWi1h0yKOSc73LaCkZptV7Pt6mh7zXj69wS3_B-fKwAPwJx5lGsU4wpLgueqT_bIJpeYjhK8Ya3gnP4GhS_AFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763665009</pqid></control><display><type>article</type><title>Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites</title><source>JSTOR Archival Journals</source><source>PubMed Central</source><creator>Baños, Benito ; Villar, Laurentino ; Salas, Margarita ; de Vega, Miguel</creator><creatorcontrib>Baños, Benito ; Villar, Laurentino ; Salas, Margarita ; de Vega, Miguel</creatorcontrib><description>The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX Bs ) that, along with polymerization and 3'–5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'–5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX Bs enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1013603107</identifier><identifier>PMID: 20974932</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Bacillus subtilis ; Bacillus subtilis - enzymology ; Bacteria ; Biological Sciences ; Catalysis ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA polymerase ; DNA Repair ; DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism ; DNA-Directed DNA Polymerase - genetics ; Enzymes ; Mutagenesis ; Nucleic acids ; Nucleotides ; Oligonucleotides ; Polymerization</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19219-19224</ispartof><rights>Copyright National Academy of Sciences Nov 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3</citedby><cites>FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748655$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748655$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20974932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baños, Benito</creatorcontrib><creatorcontrib>Villar, Laurentino</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><creatorcontrib>de Vega, Miguel</creatorcontrib><title>Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX Bs ) that, along with polymerization and 3'–5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'–5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX Bs enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way.</description><subject>Active sites</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA polymerase</subject><subject>DNA Repair</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>Enzymes</subject><subject>Mutagenesis</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Oligonucleotides</subject><subject>Polymerization</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkctuEzEUhi0EoqGwZgWy2AASIb7PeIMUyq1SBSxAYmd5PJ7WkWNPbU-l8Cq8LB4lNMDK9vF3_nP5AXiM0WuMGroag871hqlAtAbugAVGEi8Fk-guWCBEmmXLCDsBD3LeIIQkb9F9cEKQbJikZAF-nYeSXMjOQD1O9ebMSo-75Launx_wxfrrS2hDH8NkvNXZQm2Ku3FlV6O68zbDt9o476cM89QV512G7z6v4Rj9bmvTnPEDlgiTNfEyuJ_2FXTBuFxPHXo4TKlc2VS_R-0S1J2ee8mu2PwQ3Bu0z_bR4TwF3z-8_3b2aXnx5eP52fpiaZhsy9JgqQfeU9G33IiBICy5NBhjLpjl1OBG1lUZwulgZUdsyyUTRmBSa6G-0_QUvNnrjlO3tb2xdSXaq7EuQaeditqpf3-Cu1KX8UYR2TLMWBV4fhBI8Xqyuaity8Z6r4ONU1YtlaLFDReVfPYfuYlTCnU61QgqBK8WVWi1h0yKOSc73LaCkZptV7Pt6mh7zXj69wS3_B-fKwAPwJx5lGsU4wpLgueqT_bIJpeYjhK8Ya3gnP4GhS_AFA</recordid><startdate>20101109</startdate><enddate>20101109</enddate><creator>Baños, Benito</creator><creator>Villar, Laurentino</creator><creator>Salas, Margarita</creator><creator>de Vega, Miguel</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20101109</creationdate><title>Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites</title><author>Baños, Benito ; Villar, Laurentino ; Salas, Margarita ; de Vega, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active sites</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA polymerase</topic><topic>DNA Repair</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>Enzymes</topic><topic>Mutagenesis</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Oligonucleotides</topic><topic>Polymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baños, Benito</creatorcontrib><creatorcontrib>Villar, Laurentino</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><creatorcontrib>de Vega, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baños, Benito</au><au>Villar, Laurentino</au><au>Salas, Margarita</au><au>de Vega, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-09</date><risdate>2010</risdate><volume>107</volume><issue>45</issue><spage>19219</spage><epage>19224</epage><pages>19219-19224</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX Bs ) that, along with polymerization and 3'–5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'–5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX Bs enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20974932</pmid><doi>10.1073/pnas.1013603107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19219-19224
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_25748655
source JSTOR Archival Journals; PubMed Central
subjects Active sites
Bacillus subtilis
Bacillus subtilis - enzymology
Bacteria
Biological Sciences
Catalysis
Deoxyribonucleic acid
DNA
DNA damage
DNA polymerase
DNA Repair
DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism
DNA-Directed DNA Polymerase - genetics
Enzymes
Mutagenesis
Nucleic acids
Nucleotides
Oligonucleotides
Polymerization
title Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20apurinic/apyrimidinic%20(AP)%20endonuclease%20activity%20enables%20Bacillus%20subtilis%20DNA%20polymerase%20X%20to%20recognize,%20incise,%20and%20further%20repair%20abasic%20sites&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ba%C3%B1os,%20Benito&rft.date=2010-11-09&rft.volume=107&rft.issue=45&rft.spage=19219&rft.epage=19224&rft.pages=19219-19224&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1013603107&rft_dat=%3Cjstor_proqu%3E25748655%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=763665009&rft_id=info:pmid/20974932&rft_jstor_id=25748655&rfr_iscdi=true