Loading…
Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites
The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including speci...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (45), p.19219-19224 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3 |
container_end_page | 19224 |
container_issue | 45 |
container_start_page | 19219 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Baños, Benito Villar, Laurentino Salas, Margarita de Vega, Miguel |
description | The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX Bs ) that, along with polymerization and 3'–5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'–5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX Bs enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way. |
doi_str_mv | 10.1073/pnas.1013603107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_25748655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748655</jstor_id><sourcerecordid>25748655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3</originalsourceid><addsrcrecordid>eNpdkctuEzEUhi0EoqGwZgWy2AASIb7PeIMUyq1SBSxAYmd5PJ7WkWNPbU-l8Cq8LB4lNMDK9vF3_nP5AXiM0WuMGroag871hqlAtAbugAVGEi8Fk-guWCBEmmXLCDsBD3LeIIQkb9F9cEKQbJikZAF-nYeSXMjOQD1O9ebMSo-75Launx_wxfrrS2hDH8NkvNXZQm2Ku3FlV6O68zbDt9o476cM89QV512G7z6v4Rj9bmvTnPEDlgiTNfEyuJ_2FXTBuFxPHXo4TKlc2VS_R-0S1J2ee8mu2PwQ3Bu0z_bR4TwF3z-8_3b2aXnx5eP52fpiaZhsy9JgqQfeU9G33IiBICy5NBhjLpjl1OBG1lUZwulgZUdsyyUTRmBSa6G-0_QUvNnrjlO3tb2xdSXaq7EuQaeditqpf3-Cu1KX8UYR2TLMWBV4fhBI8Xqyuaity8Z6r4ONU1YtlaLFDReVfPYfuYlTCnU61QgqBK8WVWi1h0yKOSc73LaCkZptV7Pt6mh7zXj69wS3_B-fKwAPwJx5lGsU4wpLgueqT_bIJpeYjhK8Ya3gnP4GhS_AFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763665009</pqid></control><display><type>article</type><title>Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites</title><source>JSTOR Archival Journals</source><source>PubMed Central</source><creator>Baños, Benito ; Villar, Laurentino ; Salas, Margarita ; de Vega, Miguel</creator><creatorcontrib>Baños, Benito ; Villar, Laurentino ; Salas, Margarita ; de Vega, Miguel</creatorcontrib><description>The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX Bs ) that, along with polymerization and 3'–5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'–5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX Bs enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1013603107</identifier><identifier>PMID: 20974932</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Bacillus subtilis ; Bacillus subtilis - enzymology ; Bacteria ; Biological Sciences ; Catalysis ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA polymerase ; DNA Repair ; DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism ; DNA-Directed DNA Polymerase - genetics ; Enzymes ; Mutagenesis ; Nucleic acids ; Nucleotides ; Oligonucleotides ; Polymerization</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19219-19224</ispartof><rights>Copyright National Academy of Sciences Nov 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3</citedby><cites>FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748655$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748655$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20974932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baños, Benito</creatorcontrib><creatorcontrib>Villar, Laurentino</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><creatorcontrib>de Vega, Miguel</creatorcontrib><title>Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX Bs ) that, along with polymerization and 3'–5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'–5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX Bs enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way.</description><subject>Active sites</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA polymerase</subject><subject>DNA Repair</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>Enzymes</subject><subject>Mutagenesis</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Oligonucleotides</subject><subject>Polymerization</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkctuEzEUhi0EoqGwZgWy2AASIb7PeIMUyq1SBSxAYmd5PJ7WkWNPbU-l8Cq8LB4lNMDK9vF3_nP5AXiM0WuMGroag871hqlAtAbugAVGEi8Fk-guWCBEmmXLCDsBD3LeIIQkb9F9cEKQbJikZAF-nYeSXMjOQD1O9ebMSo-75Launx_wxfrrS2hDH8NkvNXZQm2Ku3FlV6O68zbDt9o476cM89QV512G7z6v4Rj9bmvTnPEDlgiTNfEyuJ_2FXTBuFxPHXo4TKlc2VS_R-0S1J2ee8mu2PwQ3Bu0z_bR4TwF3z-8_3b2aXnx5eP52fpiaZhsy9JgqQfeU9G33IiBICy5NBhjLpjl1OBG1lUZwulgZUdsyyUTRmBSa6G-0_QUvNnrjlO3tb2xdSXaq7EuQaeditqpf3-Cu1KX8UYR2TLMWBV4fhBI8Xqyuaity8Z6r4ONU1YtlaLFDReVfPYfuYlTCnU61QgqBK8WVWi1h0yKOSc73LaCkZptV7Pt6mh7zXj69wS3_B-fKwAPwJx5lGsU4wpLgueqT_bIJpeYjhK8Ya3gnP4GhS_AFA</recordid><startdate>20101109</startdate><enddate>20101109</enddate><creator>Baños, Benito</creator><creator>Villar, Laurentino</creator><creator>Salas, Margarita</creator><creator>de Vega, Miguel</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20101109</creationdate><title>Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites</title><author>Baños, Benito ; Villar, Laurentino ; Salas, Margarita ; de Vega, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active sites</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA polymerase</topic><topic>DNA Repair</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>Enzymes</topic><topic>Mutagenesis</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Oligonucleotides</topic><topic>Polymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baños, Benito</creatorcontrib><creatorcontrib>Villar, Laurentino</creatorcontrib><creatorcontrib>Salas, Margarita</creatorcontrib><creatorcontrib>de Vega, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baños, Benito</au><au>Villar, Laurentino</au><au>Salas, Margarita</au><au>de Vega, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-09</date><risdate>2010</risdate><volume>107</volume><issue>45</issue><spage>19219</spage><epage>19224</epage><pages>19219-19224</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX Bs ) that, along with polymerization and 3'–5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'–5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX Bs enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20974932</pmid><doi>10.1073/pnas.1013603107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19219-19224 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_25748655 |
source | JSTOR Archival Journals; PubMed Central |
subjects | Active sites Bacillus subtilis Bacillus subtilis - enzymology Bacteria Biological Sciences Catalysis Deoxyribonucleic acid DNA DNA damage DNA polymerase DNA Repair DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism DNA-Directed DNA Polymerase - genetics Enzymes Mutagenesis Nucleic acids Nucleotides Oligonucleotides Polymerization |
title | Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20apurinic/apyrimidinic%20(AP)%20endonuclease%20activity%20enables%20Bacillus%20subtilis%20DNA%20polymerase%20X%20to%20recognize,%20incise,%20and%20further%20repair%20abasic%20sites&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ba%C3%B1os,%20Benito&rft.date=2010-11-09&rft.volume=107&rft.issue=45&rft.spage=19219&rft.epage=19224&rft.pages=19219-19224&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1013603107&rft_dat=%3Cjstor_proqu%3E25748655%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-c19af5d36d85c6f201959c111564e53c179073c253fe9b2e85946c612aba0dba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=763665009&rft_id=info:pmid/20974932&rft_jstor_id=25748655&rfr_iscdi=true |