Loading…
Pair correlation and twin primes revisited
We establish a connection between the conjectural two-over-two ratios formula for the Riemann zeta-function and a conjecture concerning correlations of a certain arithmetic function. Specifically, we prove that the ratios conjecture and the arithmetic correlations conjecture imply the same result. T...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2016-10, Vol.472 (2194), p.1-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 11 |
container_issue | 2194 |
container_start_page | 1 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 472 |
creator | Conrey, Brian Keating, Jonathan P. |
description | We establish a connection between the conjectural two-over-two ratios formula for the Riemann zeta-function and a conjecture concerning correlations of a certain arithmetic function. Specifically, we prove that the ratios conjecture and the arithmetic correlations conjecture imply the same result. This casts a new light on the underpinnings of the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26159918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26159918</jstor_id><sourcerecordid>26159918</sourcerecordid><originalsourceid>FETCH-jstor_primary_261599183</originalsourceid><addsrcrecordid>eNpjYeA0NDYz0TU1MDLkYOAqLs4yMDCwNLUw52TQCkjMLFJIzi8qSs1JLMnMz1NIzEtRKCnPzFMoKMrMTS1WKEotyyzOLElN4WFgTUvMKU7lhdLcDLJuriHOHrpZxSX5RfEg5YlFlfFGZoamlpaGFsaE5AGDLCxM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pair correlation and twin primes revisited</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Conrey, Brian ; Keating, Jonathan P.</creator><creatorcontrib>Conrey, Brian ; Keating, Jonathan P.</creatorcontrib><description>We establish a connection between the conjectural two-over-two ratios formula for the Riemann zeta-function and a conjecture concerning correlations of a certain arithmetic function. Specifically, we prove that the ratios conjecture and the arithmetic correlations conjecture imply the same result. This casts a new light on the underpinnings of the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe.</description><identifier>ISSN: 1364-5021</identifier><language>eng</language><publisher>THE ROYAL SOCIETY</publisher><subject>Arithmetic ; Grants ; Heuristics ; Mathematical moments ; Matrix theory ; Number theoretic functions ; Number theory ; Prime numbers ; Ratios ; Riemann zeta function</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-10, Vol.472 (2194), p.1-11</ispartof><rights>The Royal Society, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26159918$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26159918$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Conrey, Brian</creatorcontrib><creatorcontrib>Keating, Jonathan P.</creatorcontrib><title>Pair correlation and twin primes revisited</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>We establish a connection between the conjectural two-over-two ratios formula for the Riemann zeta-function and a conjecture concerning correlations of a certain arithmetic function. Specifically, we prove that the ratios conjecture and the arithmetic correlations conjecture imply the same result. This casts a new light on the underpinnings of the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe.</description><subject>Arithmetic</subject><subject>Grants</subject><subject>Heuristics</subject><subject>Mathematical moments</subject><subject>Matrix theory</subject><subject>Number theoretic functions</subject><subject>Number theory</subject><subject>Prime numbers</subject><subject>Ratios</subject><subject>Riemann zeta function</subject><issn>1364-5021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0NDYz0TU1MDLkYOAqLs4yMDCwNLUw52TQCkjMLFJIzi8qSs1JLMnMz1NIzEtRKCnPzFMoKMrMTS1WKEotyyzOLElN4WFgTUvMKU7lhdLcDLJuriHOHrpZxSX5RfEg5YlFlfFGZoamlpaGFsaE5AGDLCxM</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Conrey, Brian</creator><creator>Keating, Jonathan P.</creator><general>THE ROYAL SOCIETY</general><scope/></search><sort><creationdate>20161001</creationdate><title>Pair correlation and twin primes revisited</title><author>Conrey, Brian ; Keating, Jonathan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_261599183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arithmetic</topic><topic>Grants</topic><topic>Heuristics</topic><topic>Mathematical moments</topic><topic>Matrix theory</topic><topic>Number theoretic functions</topic><topic>Number theory</topic><topic>Prime numbers</topic><topic>Ratios</topic><topic>Riemann zeta function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conrey, Brian</creatorcontrib><creatorcontrib>Keating, Jonathan P.</creatorcontrib><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conrey, Brian</au><au>Keating, Jonathan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pair correlation and twin primes revisited</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>472</volume><issue>2194</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1364-5021</issn><abstract>We establish a connection between the conjectural two-over-two ratios formula for the Riemann zeta-function and a conjecture concerning correlations of a certain arithmetic function. Specifically, we prove that the ratios conjecture and the arithmetic correlations conjecture imply the same result. This casts a new light on the underpinnings of the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe.</abstract><pub>THE ROYAL SOCIETY</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2016-10, Vol.472 (2194), p.1-11 |
issn | 1364-5021 |
language | eng |
recordid | cdi_jstor_primary_26159918 |
source | JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Arithmetic Grants Heuristics Mathematical moments Matrix theory Number theoretic functions Number theory Prime numbers Ratios Riemann zeta function |
title | Pair correlation and twin primes revisited |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pair%20correlation%20and%20twin%20primes%20revisited&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Conrey,%20Brian&rft.date=2016-10-01&rft.volume=472&rft.issue=2194&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1364-5021&rft_id=info:doi/&rft_dat=%3Cjstor%3E26159918%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_261599183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26159918&rfr_iscdi=true |