Loading…

Should I Change or Should I Go? Phenotypic Plasticity and Matching Habitat Choice in the Adaptation to Environmental Heterogeneity

It can be challenging for organisms to achieve a good match between their phenotypic characteristics and environmental requirements that vary in space and time. The evolution of adaptive phenotypes can result from genetic differentiation at the population level. Individuals, however, could also chan...

Full description

Saved in:
Bibliographic Details
Published in:The American naturalist 2017-10, Vol.190 (4), p.506-520
Main Authors: Edelaar, Pim, Jovani, Roger, Gomez-Mestre, Ivan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It can be challenging for organisms to achieve a good match between their phenotypic characteristics and environmental requirements that vary in space and time. The evolution of adaptive phenotypes can result from genetic differentiation at the population level. Individuals, however, could also change their phenotype (adaptive plasticity) or select an environment because it matches with their phenotype (matching habitat choice). It is poorly known under which conditions these different solutions to environmental heterogeneity evolve and whether they operate together. Using an individual-based simulation model, we assessed which solutions evolved depending on degree of temporal variation, costs of multiple underlying traits, and order of dispersal and development. Population genetic divergence was superseded by plasticity or matching habitat choice as temporal variation increased. Plasticity and matching habitat choice were limited by their trait costs, even when this involved only a part of the underlying traits. Independent of the order of dispersal and development, plasticity evolved more commonly than matching habitat choice, in part because the match a phenotype can achieve by matching habitat choice is limited by the types of environments available. Our results explain the apparent relative rarity of matching habitat choice in nature. At the same time, our results can be used to look for matching habitat choice in those biological systems where the conditions for other solutions seem unfavorable.
ISSN:0003-0147
1537-5323
DOI:10.1086/693345