Loading…

Bayesian adaptation of chaos representations using variational inference and sampling on geodesics

A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of the problem that characterizes the posterior...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2018-09, Vol.474 (2217), p.1-27
Main Authors: Tsilifis, P., Ghanem, R. G.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 27
container_issue 2217
container_start_page 1
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 474
creator Tsilifis, P.
Ghanem, R. G.
description A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of the problem that characterizes the posterior distributions of the series coefficients and the adaptation rotation matrix acting on the Gaussian input variables. The adaptation matrix is thus construed as a new parameter of the map from input to QoI, estimated through Bayesian inference. For the computation of the coefficients’ posterior distribution, we use a variational inference approach that approximates the posterior with a member of the same exponential family as the prior, such that it minimizes a Kullback–Leibler criterion. On the other hand, the posterior distribution of the rotation matrix is explored by employing a Geodesic Monte Carlo sampling approach, consisting of a variation of the Hamiltonian Monte Carlo algorithm for embedded manifolds, in our case, the Stiefel manifold of orthonormal matrices. The performance of our method is demonstrated through a series of numerical examples, including the problem of multiphase flow in heterogeneous porous media.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26583533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26583533</jstor_id><sourcerecordid>26583533</sourcerecordid><originalsourceid>FETCH-jstor_primary_265835333</originalsourceid><addsrcrecordid>eNqFjNsKgkAURYcoyC6fEJwfENRxvLwWRR_Qe5z0aCM6I3Ms8O-zy3tPe7P2Zs2EF8Zp6Ed5nMynLpPYV0EULsWKuQmCIFdZ6onbHkdijQawxH7AQVsDtoLijpbBUe-IyXw5w4O1qeGJTn8AtqBNRY5MQYCmBMaub9-XSVKTLSdzwRuxqLBl2v5yLXan4-Vw9hserLv2TnfoxmuUqEwqKeW__QXc40O6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian adaptation of chaos representations using variational inference and sampling on geodesics</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Tsilifis, P. ; Ghanem, R. G.</creator><creatorcontrib>Tsilifis, P. ; Ghanem, R. G.</creatorcontrib><description>A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of the problem that characterizes the posterior distributions of the series coefficients and the adaptation rotation matrix acting on the Gaussian input variables. The adaptation matrix is thus construed as a new parameter of the map from input to QoI, estimated through Bayesian inference. For the computation of the coefficients’ posterior distribution, we use a variational inference approach that approximates the posterior with a member of the same exponential family as the prior, such that it minimizes a Kullback–Leibler criterion. On the other hand, the posterior distribution of the rotation matrix is explored by employing a Geodesic Monte Carlo sampling approach, consisting of a variation of the Hamiltonian Monte Carlo algorithm for embedded manifolds, in our case, the Stiefel manifold of orthonormal matrices. The performance of our method is demonstrated through a series of numerical examples, including the problem of multiphase flow in heterogeneous porous media.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><language>eng</language><publisher>THE ROYAL SOCIETY</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-09, Vol.474 (2217), p.1-27</ispartof><rights>2018 The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26583533$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26583533$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Tsilifis, P.</creatorcontrib><creatorcontrib>Ghanem, R. G.</creatorcontrib><title>Bayesian adaptation of chaos representations using variational inference and sampling on geodesics</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of the problem that characterizes the posterior distributions of the series coefficients and the adaptation rotation matrix acting on the Gaussian input variables. The adaptation matrix is thus construed as a new parameter of the map from input to QoI, estimated through Bayesian inference. For the computation of the coefficients’ posterior distribution, we use a variational inference approach that approximates the posterior with a member of the same exponential family as the prior, such that it minimizes a Kullback–Leibler criterion. On the other hand, the posterior distribution of the rotation matrix is explored by employing a Geodesic Monte Carlo sampling approach, consisting of a variation of the Hamiltonian Monte Carlo algorithm for embedded manifolds, in our case, the Stiefel manifold of orthonormal matrices. The performance of our method is demonstrated through a series of numerical examples, including the problem of multiphase flow in heterogeneous porous media.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjNsKgkAURYcoyC6fEJwfENRxvLwWRR_Qe5z0aCM6I3Ms8O-zy3tPe7P2Zs2EF8Zp6Ed5nMynLpPYV0EULsWKuQmCIFdZ6onbHkdijQawxH7AQVsDtoLijpbBUe-IyXw5w4O1qeGJTn8AtqBNRY5MQYCmBMaub9-XSVKTLSdzwRuxqLBl2v5yLXan4-Vw9hserLv2TnfoxmuUqEwqKeW__QXc40O6</recordid><startdate>20180930</startdate><enddate>20180930</enddate><creator>Tsilifis, P.</creator><creator>Ghanem, R. G.</creator><general>THE ROYAL SOCIETY</general><scope/></search><sort><creationdate>20180930</creationdate><title>Bayesian adaptation of chaos representations using variational inference and sampling on geodesics</title><author>Tsilifis, P. ; Ghanem, R. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_265835333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsilifis, P.</creatorcontrib><creatorcontrib>Ghanem, R. G.</creatorcontrib><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsilifis, P.</au><au>Ghanem, R. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian adaptation of chaos representations using variational inference and sampling on geodesics</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2018-09-30</date><risdate>2018</risdate><volume>474</volume><issue>2217</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of the problem that characterizes the posterior distributions of the series coefficients and the adaptation rotation matrix acting on the Gaussian input variables. The adaptation matrix is thus construed as a new parameter of the map from input to QoI, estimated through Bayesian inference. For the computation of the coefficients’ posterior distribution, we use a variational inference approach that approximates the posterior with a member of the same exponential family as the prior, such that it minimizes a Kullback–Leibler criterion. On the other hand, the posterior distribution of the rotation matrix is explored by employing a Geodesic Monte Carlo sampling approach, consisting of a variation of the Hamiltonian Monte Carlo algorithm for embedded manifolds, in our case, the Stiefel manifold of orthonormal matrices. The performance of our method is demonstrated through a series of numerical examples, including the problem of multiphase flow in heterogeneous porous media.</abstract><pub>THE ROYAL SOCIETY</pub></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-09, Vol.474 (2217), p.1-27
issn 1364-5021
1471-2946
language eng
recordid cdi_jstor_primary_26583533
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
title Bayesian adaptation of chaos representations using variational inference and sampling on geodesics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20adaptation%20of%20chaos%20representations%20using%20variational%20inference%20and%20sampling%20on%20geodesics&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Tsilifis,%20P.&rft.date=2018-09-30&rft.volume=474&rft.issue=2217&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/&rft_dat=%3Cjstor%3E26583533%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_265835333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26583533&rfr_iscdi=true