Loading…

The cell wall regulates dynamics and size of plasmamembrane nanodomains in Arabidopsis

Plant plasma-membrane (PM) proteins are involved in several vital processes, such as detection of pathogens, solute transport, and cellular signaling. For these proteins to function effectively there needs to be structure within the PM allowing, for example, proteins in the same signaling cascade to...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2019-06, Vol.116 (26), p.12857-12862
Main Authors: McKenna, J. F., Rolfe, D. J., Webb, S. E. D., Tolmie, A. F., Botchway, S. W., Martin-Fernandez, M. L., Hawes, C., Runions, J.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant plasma-membrane (PM) proteins are involved in several vital processes, such as detection of pathogens, solute transport, and cellular signaling. For these proteins to function effectively there needs to be structure within the PM allowing, for example, proteins in the same signaling cascade to be spatially organized. Here we demonstrate that several proteinswith divergent functions are located in clusters of differing size in the membrane using subdiffraction-limited Airyscan confocal microscopy. Single particle tracking reveals that these proteins move at different rates within the membrane. Actin and microtubule cytoskeletons appear to significantly regulate the mobility of one of these proteins (the pathogen receptor FLS2) and we further demonstrate that the cell wall is critical for the regulation of cluster size by quantifying single particle dynamics of proteins with key roles inmorphogenesis (PIN3) and pathogen perception (FLS2). We propose a model in which the cell wall and cytoskeleton are pivotal for regulation of protein cluster size and dynamics, thereby contributing to the formation and functionality of membrane nanodomains.
ISSN:0027-8424
1091-6490