Loading…

Functional cooperation of the glycine synthasereductase and Wood–Ljungdahl pathways for autotrophic growth of Clostridium drakei

Among CO₂-fixing metabolic pathways in nature, the linear Wood– Ljungdahl pathway (WLP) in phylogenetically diverse acetateforming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO₂ to formate and then into acetyl-CoA. Despite two g...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (13), p.7516-7523
Main Authors: Song, Yoseb, Lee, Jin Soo, Shin, Jongoh, Lee, Gyu Min, Jin, Sangrak, Kang, Seulgi, Lee, Jung-Kul, Kim, Dong Rip, Lee, Eun Yeol, Kim, Sun Chang, Cho, Suhyung, Kim, Donghyuk, Cho, Byung-Kwan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7523
container_issue 13
container_start_page 7516
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Song, Yoseb
Lee, Jin Soo
Shin, Jongoh
Lee, Gyu Min
Jin, Sangrak
Kang, Seulgi
Lee, Jung-Kul
Kim, Dong Rip
Lee, Eun Yeol
Kim, Sun Chang
Cho, Suhyung
Kim, Donghyuk
Cho, Byung-Kwan
description Among CO₂-fixing metabolic pathways in nature, the linear Wood– Ljungdahl pathway (WLP) in phylogenetically diverse acetateforming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO₂ to formate and then into acetyl-CoA. Despite two genes encoding glycine synthase being well-conserved in WLP gene clusters, the functional role of glycine synthase under autotrophic growth conditions has remained uncertain. Here, using the reconstructed genomescale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, we discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO₂, subsequently converting CO₂ into acetyl-CoA, acetyl-phosphate, and serine. Moreover, the functional cooperation of the pathways enhances CO₂ consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.
doi_str_mv 10.1073/pnas.1912289117
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_26929476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929476</jstor_id><sourcerecordid>26929476</sourcerecordid><originalsourceid>FETCH-LOGICAL-j92t-235c008ef74f69014bb9f65f39621b7f98e729d046e9d5be1ffa18bf7ff57bfc3</originalsourceid><addsrcrecordid>eNotjM1KwzAAgIMoOKdnT0JeoDNJ06Q5ynAqDLwMPI40P21ql5QkZfQmvoJv6JPo0NP3fZcPgFuMVhjx8n70Mq2wwITUAmN-BhYYCVwwKtA5WCBEeFFTQi_BVUo9QkhUNVqAz83kVXbBywGqEEYT5algsDB3BrbDrJw3MM0-dzKZaPSk8q9A6TV8C0F_f3xt-8m3WnYDHGXujnJO0IYI5ZRDjmHsnIJtDMfcna7rIaQcnXbTAeoo3427BhdWDsnc_HMJdpvH3fq52L4-vawftkUvSC5IWSmEamM5tUwgTJtGWFbZUjCCG25FbTgRGlFmhK4ag62VuG4st7bijVXlEtz9bfuUQ9yP0R1knPeECSIoZ-UP_y1k_g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Functional cooperation of the glycine synthasereductase and Wood–Ljungdahl pathways for autotrophic growth of Clostridium drakei</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Song, Yoseb ; Lee, Jin Soo ; Shin, Jongoh ; Lee, Gyu Min ; Jin, Sangrak ; Kang, Seulgi ; Lee, Jung-Kul ; Kim, Dong Rip ; Lee, Eun Yeol ; Kim, Sun Chang ; Cho, Suhyung ; Kim, Donghyuk ; Cho, Byung-Kwan</creator><creatorcontrib>Song, Yoseb ; Lee, Jin Soo ; Shin, Jongoh ; Lee, Gyu Min ; Jin, Sangrak ; Kang, Seulgi ; Lee, Jung-Kul ; Kim, Dong Rip ; Lee, Eun Yeol ; Kim, Sun Chang ; Cho, Suhyung ; Kim, Donghyuk ; Cho, Byung-Kwan</creatorcontrib><description>Among CO₂-fixing metabolic pathways in nature, the linear Wood– Ljungdahl pathway (WLP) in phylogenetically diverse acetateforming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO₂ to formate and then into acetyl-CoA. Despite two genes encoding glycine synthase being well-conserved in WLP gene clusters, the functional role of glycine synthase under autotrophic growth conditions has remained uncertain. Here, using the reconstructed genomescale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, we discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO₂, subsequently converting CO₂ into acetyl-CoA, acetyl-phosphate, and serine. Moreover, the functional cooperation of the pathways enhances CO₂ consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1912289117</identifier><language>eng</language><publisher>National Academy of Sciences</publisher><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7516-7523</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929476$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929476$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Lee, Jin Soo</creatorcontrib><creatorcontrib>Shin, Jongoh</creatorcontrib><creatorcontrib>Lee, Gyu Min</creatorcontrib><creatorcontrib>Jin, Sangrak</creatorcontrib><creatorcontrib>Kang, Seulgi</creatorcontrib><creatorcontrib>Lee, Jung-Kul</creatorcontrib><creatorcontrib>Kim, Dong Rip</creatorcontrib><creatorcontrib>Lee, Eun Yeol</creatorcontrib><creatorcontrib>Kim, Sun Chang</creatorcontrib><creatorcontrib>Cho, Suhyung</creatorcontrib><creatorcontrib>Kim, Donghyuk</creatorcontrib><creatorcontrib>Cho, Byung-Kwan</creatorcontrib><title>Functional cooperation of the glycine synthasereductase and Wood–Ljungdahl pathways for autotrophic growth of Clostridium drakei</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Among CO₂-fixing metabolic pathways in nature, the linear Wood– Ljungdahl pathway (WLP) in phylogenetically diverse acetateforming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO₂ to formate and then into acetyl-CoA. Despite two genes encoding glycine synthase being well-conserved in WLP gene clusters, the functional role of glycine synthase under autotrophic growth conditions has remained uncertain. Here, using the reconstructed genomescale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, we discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO₂, subsequently converting CO₂ into acetyl-CoA, acetyl-phosphate, and serine. Moreover, the functional cooperation of the pathways enhances CO₂ consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.</description><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjM1KwzAAgIMoOKdnT0JeoDNJ06Q5ynAqDLwMPI40P21ql5QkZfQmvoJv6JPo0NP3fZcPgFuMVhjx8n70Mq2wwITUAmN-BhYYCVwwKtA5WCBEeFFTQi_BVUo9QkhUNVqAz83kVXbBywGqEEYT5algsDB3BrbDrJw3MM0-dzKZaPSk8q9A6TV8C0F_f3xt-8m3WnYDHGXujnJO0IYI5ZRDjmHsnIJtDMfcna7rIaQcnXbTAeoo3427BhdWDsnc_HMJdpvH3fq52L4-vawftkUvSC5IWSmEamM5tUwgTJtGWFbZUjCCG25FbTgRGlFmhK4ag62VuG4st7bijVXlEtz9bfuUQ9yP0R1knPeECSIoZ-UP_y1k_g</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Song, Yoseb</creator><creator>Lee, Jin Soo</creator><creator>Shin, Jongoh</creator><creator>Lee, Gyu Min</creator><creator>Jin, Sangrak</creator><creator>Kang, Seulgi</creator><creator>Lee, Jung-Kul</creator><creator>Kim, Dong Rip</creator><creator>Lee, Eun Yeol</creator><creator>Kim, Sun Chang</creator><creator>Cho, Suhyung</creator><creator>Kim, Donghyuk</creator><creator>Cho, Byung-Kwan</creator><general>National Academy of Sciences</general><scope/></search><sort><creationdate>20200331</creationdate><title>Functional cooperation of the glycine synthasereductase and Wood–Ljungdahl pathways for autotrophic growth of Clostridium drakei</title><author>Song, Yoseb ; Lee, Jin Soo ; Shin, Jongoh ; Lee, Gyu Min ; Jin, Sangrak ; Kang, Seulgi ; Lee, Jung-Kul ; Kim, Dong Rip ; Lee, Eun Yeol ; Kim, Sun Chang ; Cho, Suhyung ; Kim, Donghyuk ; Cho, Byung-Kwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j92t-235c008ef74f69014bb9f65f39621b7f98e729d046e9d5be1ffa18bf7ff57bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Lee, Jin Soo</creatorcontrib><creatorcontrib>Shin, Jongoh</creatorcontrib><creatorcontrib>Lee, Gyu Min</creatorcontrib><creatorcontrib>Jin, Sangrak</creatorcontrib><creatorcontrib>Kang, Seulgi</creatorcontrib><creatorcontrib>Lee, Jung-Kul</creatorcontrib><creatorcontrib>Kim, Dong Rip</creatorcontrib><creatorcontrib>Lee, Eun Yeol</creatorcontrib><creatorcontrib>Kim, Sun Chang</creatorcontrib><creatorcontrib>Cho, Suhyung</creatorcontrib><creatorcontrib>Kim, Donghyuk</creatorcontrib><creatorcontrib>Cho, Byung-Kwan</creatorcontrib><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yoseb</au><au>Lee, Jin Soo</au><au>Shin, Jongoh</au><au>Lee, Gyu Min</au><au>Jin, Sangrak</au><au>Kang, Seulgi</au><au>Lee, Jung-Kul</au><au>Kim, Dong Rip</au><au>Lee, Eun Yeol</au><au>Kim, Sun Chang</au><au>Cho, Suhyung</au><au>Kim, Donghyuk</au><au>Cho, Byung-Kwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional cooperation of the glycine synthasereductase and Wood–Ljungdahl pathways for autotrophic growth of Clostridium drakei</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-03-31</date><risdate>2020</risdate><volume>117</volume><issue>13</issue><spage>7516</spage><epage>7523</epage><pages>7516-7523</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Among CO₂-fixing metabolic pathways in nature, the linear Wood– Ljungdahl pathway (WLP) in phylogenetically diverse acetateforming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO₂ to formate and then into acetyl-CoA. Despite two genes encoding glycine synthase being well-conserved in WLP gene clusters, the functional role of glycine synthase under autotrophic growth conditions has remained uncertain. Here, using the reconstructed genomescale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, we discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO₂, subsequently converting CO₂ into acetyl-CoA, acetyl-phosphate, and serine. Moreover, the functional cooperation of the pathways enhances CO₂ consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.</abstract><pub>National Academy of Sciences</pub><doi>10.1073/pnas.1912289117</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7516-7523
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_26929476
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
title Functional cooperation of the glycine synthasereductase and Wood–Ljungdahl pathways for autotrophic growth of Clostridium drakei
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20cooperation%20of%20the%20glycine%20synthasereductase%20and%20Wood%E2%80%93Ljungdahl%20pathways%20for%20autotrophic%20growth%20of%20Clostridium%20drakei&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Song,%20Yoseb&rft.date=2020-03-31&rft.volume=117&rft.issue=13&rft.spage=7516&rft.epage=7523&rft.pages=7516-7523&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1912289117&rft_dat=%3Cjstor%3E26929476%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j92t-235c008ef74f69014bb9f65f39621b7f98e729d046e9d5be1ffa18bf7ff57bfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26929476&rfr_iscdi=true