Loading…

Ćirić type cyclic contractions and their best cyclic periodic points

In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To...

Full description

Saved in:
Bibliographic Details
Published in:Carpathian Journal of Mathematics 2022-01, Vol.38 (2), p.315-326
Main Authors: Aslantas, Mustafa, Sahin, Hakan, Altun, Ishak
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 326
container_issue 2
container_start_page 315
container_title Carpathian Journal of Mathematics
container_volume 38
creator Aslantas, Mustafa
Sahin, Hakan
Altun, Ishak
description In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To overcome this deficiency, we give a more suitable definition named as best cyclic periodic point. Finally, we obtain some best cyclic periodic point theorems, including the famous periodic point result of Ćirić [8], for nonunique cyclic contractions. We also provide some illustrative and comparative examples to support our results.
doi_str_mv 10.37193/CJM.2022.02.04
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_27105195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27105195</jstor_id><sourcerecordid>27105195</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-cdb6f54505b92fd73d698b3f435828dad77164ae9e555da1b8ec6663361f67c43</originalsourceid><addsrcrecordid>eNo1jM1KAzEYRYMoWGrXroS8wIz58p-lDFYrlW7qumSSDGaoM0OSzbyAvlgfzIoKB-5ZXA5Ct0BqpsCw--bltaaE0pqc4RdoAZqzinMCl2cXmldUC7hGq5x7QghoTQyTC7Q-fcYUT1-4zFPAbnbH6LAbh5KsK3EcMraDx-U9xITbkMv_ZQopjv5HxjiUfIOuOnvMYfW3S_S2ftw3z9V297RpHrZVD0qVyvlWdoILIlpDO6-Yl0a3rONMaKq99UqB5DaYIITwFlodnJSSMQmdVI6zJbr77fa5jOkwpfhh03ygCogAI9g3wh5NBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ćirić type cyclic contractions and their best cyclic periodic points</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Aslantas, Mustafa ; Sahin, Hakan ; Altun, Ishak</creator><creatorcontrib>Aslantas, Mustafa ; Sahin, Hakan ; Altun, Ishak</creatorcontrib><description>In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To overcome this deficiency, we give a more suitable definition named as best cyclic periodic point. Finally, we obtain some best cyclic periodic point theorems, including the famous periodic point result of Ćirić [8], for nonunique cyclic contractions. We also provide some illustrative and comparative examples to support our results.</description><identifier>ISSN: 1584-2851</identifier><identifier>EISSN: 1843-4401</identifier><identifier>DOI: 10.37193/CJM.2022.02.04</identifier><language>eng</language><publisher>Sinus Association</publisher><ispartof>Carpathian Journal of Mathematics, 2022-01, Vol.38 (2), p.315-326</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27105195$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27105195$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Aslantas, Mustafa</creatorcontrib><creatorcontrib>Sahin, Hakan</creatorcontrib><creatorcontrib>Altun, Ishak</creatorcontrib><title>Ćirić type cyclic contractions and their best cyclic periodic points</title><title>Carpathian Journal of Mathematics</title><description>In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To overcome this deficiency, we give a more suitable definition named as best cyclic periodic point. Finally, we obtain some best cyclic periodic point theorems, including the famous periodic point result of Ćirić [8], for nonunique cyclic contractions. We also provide some illustrative and comparative examples to support our results.</description><issn>1584-2851</issn><issn>1843-4401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo1jM1KAzEYRYMoWGrXroS8wIz58p-lDFYrlW7qumSSDGaoM0OSzbyAvlgfzIoKB-5ZXA5Ct0BqpsCw--bltaaE0pqc4RdoAZqzinMCl2cXmldUC7hGq5x7QghoTQyTC7Q-fcYUT1-4zFPAbnbH6LAbh5KsK3EcMraDx-U9xITbkMv_ZQopjv5HxjiUfIOuOnvMYfW3S_S2ftw3z9V297RpHrZVD0qVyvlWdoILIlpDO6-Yl0a3rONMaKq99UqB5DaYIITwFlodnJSSMQmdVI6zJbr77fa5jOkwpfhh03ygCogAI9g3wh5NBg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Aslantas, Mustafa</creator><creator>Sahin, Hakan</creator><creator>Altun, Ishak</creator><general>Sinus Association</general><scope/></search><sort><creationdate>20220101</creationdate><title>Ćirić type cyclic contractions and their best cyclic periodic points</title><author>Aslantas, Mustafa ; Sahin, Hakan ; Altun, Ishak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-cdb6f54505b92fd73d698b3f435828dad77164ae9e555da1b8ec6663361f67c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslantas, Mustafa</creatorcontrib><creatorcontrib>Sahin, Hakan</creatorcontrib><creatorcontrib>Altun, Ishak</creatorcontrib><jtitle>Carpathian Journal of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslantas, Mustafa</au><au>Sahin, Hakan</au><au>Altun, Ishak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ćirić type cyclic contractions and their best cyclic periodic points</atitle><jtitle>Carpathian Journal of Mathematics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>315</spage><epage>326</epage><pages>315-326</pages><issn>1584-2851</issn><eissn>1843-4401</eissn><abstract>In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To overcome this deficiency, we give a more suitable definition named as best cyclic periodic point. Finally, we obtain some best cyclic periodic point theorems, including the famous periodic point result of Ćirić [8], for nonunique cyclic contractions. We also provide some illustrative and comparative examples to support our results.</abstract><pub>Sinus Association</pub><doi>10.37193/CJM.2022.02.04</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1584-2851
ispartof Carpathian Journal of Mathematics, 2022-01, Vol.38 (2), p.315-326
issn 1584-2851
1843-4401
language eng
recordid cdi_jstor_primary_27105195
source JSTOR Archival Journals and Primary Sources Collection
title Ćirić type cyclic contractions and their best cyclic periodic points
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%C4%86iri%C4%87%20type%20cyclic%20contractions%20and%20their%20best%20cyclic%20periodic%20points&rft.jtitle=Carpathian%20Journal%20of%20Mathematics&rft.au=Aslantas,%20Mustafa&rft.date=2022-01-01&rft.volume=38&rft.issue=2&rft.spage=315&rft.epage=326&rft.pages=315-326&rft.issn=1584-2851&rft.eissn=1843-4401&rft_id=info:doi/10.37193/CJM.2022.02.04&rft_dat=%3Cjstor%3E27105195%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j177t-cdb6f54505b92fd73d698b3f435828dad77164ae9e555da1b8ec6663361f67c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27105195&rfr_iscdi=true