Loading…
Ćirić type cyclic contractions and their best cyclic periodic points
In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To...
Saved in:
Published in: | Carpathian Journal of Mathematics 2022-01, Vol.38 (2), p.315-326 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 326 |
container_issue | 2 |
container_start_page | 315 |
container_title | Carpathian Journal of Mathematics |
container_volume | 38 |
creator | Aslantas, Mustafa Sahin, Hakan Altun, Ishak |
description | In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To overcome this deficiency, we give a more suitable definition named as best cyclic periodic point. Finally, we obtain some best cyclic periodic point theorems, including the famous periodic point result of Ćirić [8], for nonunique cyclic contractions. We also provide some illustrative and comparative examples to support our results. |
doi_str_mv | 10.37193/CJM.2022.02.04 |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_27105195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27105195</jstor_id><sourcerecordid>27105195</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-cdb6f54505b92fd73d698b3f435828dad77164ae9e555da1b8ec6663361f67c43</originalsourceid><addsrcrecordid>eNo1jM1KAzEYRYMoWGrXroS8wIz58p-lDFYrlW7qumSSDGaoM0OSzbyAvlgfzIoKB-5ZXA5Ct0BqpsCw--bltaaE0pqc4RdoAZqzinMCl2cXmldUC7hGq5x7QghoTQyTC7Q-fcYUT1-4zFPAbnbH6LAbh5KsK3EcMraDx-U9xITbkMv_ZQopjv5HxjiUfIOuOnvMYfW3S_S2ftw3z9V297RpHrZVD0qVyvlWdoILIlpDO6-Yl0a3rONMaKq99UqB5DaYIITwFlodnJSSMQmdVI6zJbr77fa5jOkwpfhh03ygCogAI9g3wh5NBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ćirić type cyclic contractions and their best cyclic periodic points</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Aslantas, Mustafa ; Sahin, Hakan ; Altun, Ishak</creator><creatorcontrib>Aslantas, Mustafa ; Sahin, Hakan ; Altun, Ishak</creatorcontrib><description>In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To overcome this deficiency, we give a more suitable definition named as best cyclic periodic point. Finally, we obtain some best cyclic periodic point theorems, including the famous periodic point result of Ćirić [8], for nonunique cyclic contractions. We also provide some illustrative and comparative examples to support our results.</description><identifier>ISSN: 1584-2851</identifier><identifier>EISSN: 1843-4401</identifier><identifier>DOI: 10.37193/CJM.2022.02.04</identifier><language>eng</language><publisher>Sinus Association</publisher><ispartof>Carpathian Journal of Mathematics, 2022-01, Vol.38 (2), p.315-326</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27105195$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27105195$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Aslantas, Mustafa</creatorcontrib><creatorcontrib>Sahin, Hakan</creatorcontrib><creatorcontrib>Altun, Ishak</creatorcontrib><title>Ćirić type cyclic contractions and their best cyclic periodic points</title><title>Carpathian Journal of Mathematics</title><description>In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To overcome this deficiency, we give a more suitable definition named as best cyclic periodic point. Finally, we obtain some best cyclic periodic point theorems, including the famous periodic point result of Ćirić [8], for nonunique cyclic contractions. We also provide some illustrative and comparative examples to support our results.</description><issn>1584-2851</issn><issn>1843-4401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo1jM1KAzEYRYMoWGrXroS8wIz58p-lDFYrlW7qumSSDGaoM0OSzbyAvlgfzIoKB-5ZXA5Ct0BqpsCw--bltaaE0pqc4RdoAZqzinMCl2cXmldUC7hGq5x7QghoTQyTC7Q-fcYUT1-4zFPAbnbH6LAbh5KsK3EcMraDx-U9xITbkMv_ZQopjv5HxjiUfIOuOnvMYfW3S_S2ftw3z9V297RpHrZVD0qVyvlWdoILIlpDO6-Yl0a3rONMaKq99UqB5DaYIITwFlodnJSSMQmdVI6zJbr77fa5jOkwpfhh03ygCogAI9g3wh5NBg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Aslantas, Mustafa</creator><creator>Sahin, Hakan</creator><creator>Altun, Ishak</creator><general>Sinus Association</general><scope/></search><sort><creationdate>20220101</creationdate><title>Ćirić type cyclic contractions and their best cyclic periodic points</title><author>Aslantas, Mustafa ; Sahin, Hakan ; Altun, Ishak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-cdb6f54505b92fd73d698b3f435828dad77164ae9e555da1b8ec6663361f67c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslantas, Mustafa</creatorcontrib><creatorcontrib>Sahin, Hakan</creatorcontrib><creatorcontrib>Altun, Ishak</creatorcontrib><jtitle>Carpathian Journal of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslantas, Mustafa</au><au>Sahin, Hakan</au><au>Altun, Ishak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ćirić type cyclic contractions and their best cyclic periodic points</atitle><jtitle>Carpathian Journal of Mathematics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>315</spage><epage>326</epage><pages>315-326</pages><issn>1584-2851</issn><eissn>1843-4401</eissn><abstract>In the present paper, by introducing a new notion named as nonunique cyclic contractions, we give some best proximity point results for such mappings. Then, we indicate the shortcoming of the concept of best periodic proximity point which is defined for cyclic mapping by giving a simple example. To overcome this deficiency, we give a more suitable definition named as best cyclic periodic point. Finally, we obtain some best cyclic periodic point theorems, including the famous periodic point result of Ćirić [8], for nonunique cyclic contractions. We also provide some illustrative and comparative examples to support our results.</abstract><pub>Sinus Association</pub><doi>10.37193/CJM.2022.02.04</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1584-2851 |
ispartof | Carpathian Journal of Mathematics, 2022-01, Vol.38 (2), p.315-326 |
issn | 1584-2851 1843-4401 |
language | eng |
recordid | cdi_jstor_primary_27105195 |
source | JSTOR Archival Journals and Primary Sources Collection |
title | Ćirić type cyclic contractions and their best cyclic periodic points |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%C4%86iri%C4%87%20type%20cyclic%20contractions%20and%20their%20best%20cyclic%20periodic%20points&rft.jtitle=Carpathian%20Journal%20of%20Mathematics&rft.au=Aslantas,%20Mustafa&rft.date=2022-01-01&rft.volume=38&rft.issue=2&rft.spage=315&rft.epage=326&rft.pages=315-326&rft.issn=1584-2851&rft.eissn=1843-4401&rft_id=info:doi/10.37193/CJM.2022.02.04&rft_dat=%3Cjstor%3E27105195%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j177t-cdb6f54505b92fd73d698b3f435828dad77164ae9e555da1b8ec6663361f67c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27105195&rfr_iscdi=true |