Loading…
Tree-Structured Wavelet Estimation in a Mixed Effects Model for Spectra of Replicated Time Series
This article develops a method for estimating the spectrum of a stationary process using time series traces recorded from experimental designs. Our procedure estimates the "common" log-spectrum and the variability over the traces (or subjects) using a mixed effects model. We combine spatia...
Saved in:
Published in: | Journal of the American Statistical Association 2010-06, Vol.105 (490), p.634-646 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article develops a method for estimating the spectrum of a stationary process using time series traces recorded from experimental designs. Our procedure estimates the "common" log-spectrum and the variability over the traces (or subjects) using a mixed effects model. We combine spatially adaptive smoothing methods with recursive dyadic partitioning to construct a model for predicting subject-specific effects. The method is easy to implement and can handle large datasets because it uses the discrete wavelet transform which is computationally efficient. Numerical studies confirm that the proposed method performs very well despite its simplicity. The method is also applied to a multisubject electroencephalogram dataset. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1198/jasa.2010.tm09132 |