Loading…

Toward a Quantum-Mechanical Description of Metal-Assisted Phosphoryl Transfer in Pyrophosphatase

The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1....

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2001-03, Vol.98 (6), p.3121-3126
Main Authors: Heikinheimo, P., Tuominen, V., A.-K. Ahonen, Teplyakov, A., Cooperman, B. S., Baykov, A. A., Lahti, R., Goldman, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-650974ce703c200e673c3aec2168ccc976c85bdd36eeeb65bed30d502d67d2ef3
cites cdi_FETCH-LOGICAL-c551t-650974ce703c200e673c3aec2168ccc976c85bdd36eeeb65bed30d502d67d2ef3
container_end_page 3126
container_issue 6
container_start_page 3121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Heikinheimo, P.
Tuominen, V.
A.-K. Ahonen
Teplyakov, A.
Cooperman, B. S.
Baykov, A. A.
Lahti, R.
Goldman, A.
description The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1.15 Å and fluoride-inhibited complex at 1.9 Å visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (Onu) directly attacks PPi with a pKa vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and Onu, in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.
doi_str_mv 10.1073/pnas.061612498
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_3055199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3055199</jstor_id><sourcerecordid>3055199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-650974ce703c200e673c3aec2168ccc976c85bdd36eeeb65bed30d502d67d2ef3</originalsourceid><addsrcrecordid>eNptkc1vEzEQxS0EomnhygnQqgduG8b2rr2WuFTlU2pFkcLZON5ZstHG3tpeIP89DgmhIE5zeL83ejOPkCcU5hQkfzk6E-cgqKCsUs09MqOgaCkqBffJDIDJsqlYdUJOY1wDgKobeEhOaKYbqNiMfFn47ya0hSk-TcalaVNeo10Z11szFK8x2tCPqfeu8F1xjckM5UWMfUzYFjcrH8eVD9uhWATjYoeh6F1xsw1-_CWZZCI-Ig86M0R8fJhn5PPbN4vL9-XVx3cfLi-uSlvXNJWiBiUrixK4ZQAoJLfcoGVUNNZaJYVt6mXbcoGIS1EvseXQ1sBaIVuGHT8jr_Z7x2m5wdaiS8EMegz9xoSt9qbXfyuuX-mv_pvm-Xsy218c7MHfThiT3vTR4jAYh36KWgolGWvqDJ7_A679FFw-TTOgPH-bNhma7yEbfIwBu2MOCnrXm971po-9ZcPzu-n_4IeiMvDsAOyMv2XVaKE5ZfRO_v_qupuGIeGPlMGne3Adkw9HkkOuQSn-Ew3ntyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201384218</pqid></control><display><type>article</type><title>Toward a Quantum-Mechanical Description of Metal-Assisted Phosphoryl Transfer in Pyrophosphatase</title><source>PubMed Central(OpenAccess)</source><source>JSTOR-E-Journals</source><creator>Heikinheimo, P. ; Tuominen, V. ; A.-K. Ahonen ; Teplyakov, A. ; Cooperman, B. S. ; Baykov, A. A. ; Lahti, R. ; Goldman, A.</creator><creatorcontrib>Heikinheimo, P. ; Tuominen, V. ; A.-K. Ahonen ; Teplyakov, A. ; Cooperman, B. S. ; Baykov, A. A. ; Lahti, R. ; Goldman, A.</creatorcontrib><description>The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1.15 Å and fluoride-inhibited complex at 1.9 Å visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (Onu) directly attacks PPi with a pKa vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and Onu, in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.061612498</identifier><identifier>PMID: 11248042</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Atoms ; Biochemistry ; Biological Sciences ; Catalysis ; Coordination polymers ; Crystallography, X-Ray ; Diphosphates - chemistry ; Enzymes ; Fluorides - chemistry ; Hydrogen bonds ; Kinetics ; Metals ; Molecules ; Nucleophiles ; Phosphates ; Phosphorus - chemistry ; Protein Structure, Tertiary ; Pyrophosphatases - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-03, Vol.98 (6), p.3121-3126</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 13, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-650974ce703c200e673c3aec2168ccc976c85bdd36eeeb65bed30d502d67d2ef3</citedby><cites>FETCH-LOGICAL-c551t-650974ce703c200e673c3aec2168ccc976c85bdd36eeeb65bed30d502d67d2ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3055199$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3055199$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11248042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heikinheimo, P.</creatorcontrib><creatorcontrib>Tuominen, V.</creatorcontrib><creatorcontrib>A.-K. Ahonen</creatorcontrib><creatorcontrib>Teplyakov, A.</creatorcontrib><creatorcontrib>Cooperman, B. S.</creatorcontrib><creatorcontrib>Baykov, A. A.</creatorcontrib><creatorcontrib>Lahti, R.</creatorcontrib><creatorcontrib>Goldman, A.</creatorcontrib><title>Toward a Quantum-Mechanical Description of Metal-Assisted Phosphoryl Transfer in Pyrophosphatase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1.15 Å and fluoride-inhibited complex at 1.9 Å visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (Onu) directly attacks PPi with a pKa vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and Onu, in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.</description><subject>Active sites</subject><subject>Atoms</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Coordination polymers</subject><subject>Crystallography, X-Ray</subject><subject>Diphosphates - chemistry</subject><subject>Enzymes</subject><subject>Fluorides - chemistry</subject><subject>Hydrogen bonds</subject><subject>Kinetics</subject><subject>Metals</subject><subject>Molecules</subject><subject>Nucleophiles</subject><subject>Phosphates</subject><subject>Phosphorus - chemistry</subject><subject>Protein Structure, Tertiary</subject><subject>Pyrophosphatases - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNptkc1vEzEQxS0EomnhygnQqgduG8b2rr2WuFTlU2pFkcLZON5ZstHG3tpeIP89DgmhIE5zeL83ejOPkCcU5hQkfzk6E-cgqKCsUs09MqOgaCkqBffJDIDJsqlYdUJOY1wDgKobeEhOaKYbqNiMfFn47ya0hSk-TcalaVNeo10Z11szFK8x2tCPqfeu8F1xjckM5UWMfUzYFjcrH8eVD9uhWATjYoeh6F1xsw1-_CWZZCI-Ig86M0R8fJhn5PPbN4vL9-XVx3cfLi-uSlvXNJWiBiUrixK4ZQAoJLfcoGVUNNZaJYVt6mXbcoGIS1EvseXQ1sBaIVuGHT8jr_Z7x2m5wdaiS8EMegz9xoSt9qbXfyuuX-mv_pvm-Xsy218c7MHfThiT3vTR4jAYh36KWgolGWvqDJ7_A679FFw-TTOgPH-bNhma7yEbfIwBu2MOCnrXm971po-9ZcPzu-n_4IeiMvDsAOyMv2XVaKE5ZfRO_v_qupuGIeGPlMGne3Adkw9HkkOuQSn-Ew3ntyg</recordid><startdate>20010313</startdate><enddate>20010313</enddate><creator>Heikinheimo, P.</creator><creator>Tuominen, V.</creator><creator>A.-K. Ahonen</creator><creator>Teplyakov, A.</creator><creator>Cooperman, B. S.</creator><creator>Baykov, A. A.</creator><creator>Lahti, R.</creator><creator>Goldman, A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010313</creationdate><title>Toward a Quantum-Mechanical Description of Metal-Assisted Phosphoryl Transfer in Pyrophosphatase</title><author>Heikinheimo, P. ; Tuominen, V. ; A.-K. Ahonen ; Teplyakov, A. ; Cooperman, B. S. ; Baykov, A. A. ; Lahti, R. ; Goldman, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-650974ce703c200e673c3aec2168ccc976c85bdd36eeeb65bed30d502d67d2ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Active sites</topic><topic>Atoms</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Coordination polymers</topic><topic>Crystallography, X-Ray</topic><topic>Diphosphates - chemistry</topic><topic>Enzymes</topic><topic>Fluorides - chemistry</topic><topic>Hydrogen bonds</topic><topic>Kinetics</topic><topic>Metals</topic><topic>Molecules</topic><topic>Nucleophiles</topic><topic>Phosphates</topic><topic>Phosphorus - chemistry</topic><topic>Protein Structure, Tertiary</topic><topic>Pyrophosphatases - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heikinheimo, P.</creatorcontrib><creatorcontrib>Tuominen, V.</creatorcontrib><creatorcontrib>A.-K. Ahonen</creatorcontrib><creatorcontrib>Teplyakov, A.</creatorcontrib><creatorcontrib>Cooperman, B. S.</creatorcontrib><creatorcontrib>Baykov, A. A.</creatorcontrib><creatorcontrib>Lahti, R.</creatorcontrib><creatorcontrib>Goldman, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heikinheimo, P.</au><au>Tuominen, V.</au><au>A.-K. Ahonen</au><au>Teplyakov, A.</au><au>Cooperman, B. S.</au><au>Baykov, A. A.</au><au>Lahti, R.</au><au>Goldman, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a Quantum-Mechanical Description of Metal-Assisted Phosphoryl Transfer in Pyrophosphatase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-03-13</date><risdate>2001</risdate><volume>98</volume><issue>6</issue><spage>3121</spage><epage>3126</epage><pages>3121-3126</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1.15 Å and fluoride-inhibited complex at 1.9 Å visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (Onu) directly attacks PPi with a pKa vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and Onu, in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11248042</pmid><doi>10.1073/pnas.061612498</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-03, Vol.98 (6), p.3121-3126
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_3055199
source PubMed Central(OpenAccess); JSTOR-E-Journals
subjects Active sites
Atoms
Biochemistry
Biological Sciences
Catalysis
Coordination polymers
Crystallography, X-Ray
Diphosphates - chemistry
Enzymes
Fluorides - chemistry
Hydrogen bonds
Kinetics
Metals
Molecules
Nucleophiles
Phosphates
Phosphorus - chemistry
Protein Structure, Tertiary
Pyrophosphatases - chemistry
title Toward a Quantum-Mechanical Description of Metal-Assisted Phosphoryl Transfer in Pyrophosphatase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20Quantum-Mechanical%20Description%20of%20Metal-Assisted%20Phosphoryl%20Transfer%20in%20Pyrophosphatase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Heikinheimo,%20P.&rft.date=2001-03-13&rft.volume=98&rft.issue=6&rft.spage=3121&rft.epage=3126&rft.pages=3121-3126&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.061612498&rft_dat=%3Cjstor_pubme%3E3055199%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-650974ce703c200e673c3aec2168ccc976c85bdd36eeeb65bed30d502d67d2ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201384218&rft_id=info:pmid/11248042&rft_jstor_id=3055199&rfr_iscdi=true