Loading…

Cholesterol feeding of mice expressing cholesterol 7α-hydroxylase increases bile acid pool size despite decreased enzyme activity

Dietary cholesterol regulation of cholesterol 7α-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classical pathway of bile acid synthesis, has been implicated in plasma cholesterol responsiveness. In the current study, the effects of 0.0% and 0.5% cholesterol diets were examined in Cyp7a1 knoc...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2004-02, Vol.101 (7), p.1846-1851
Main Authors: Tiemann, M, Han, Z, Soccio, R, Bollineni, J, Shefer, S, Sehayek, E, Breslow, J.L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dietary cholesterol regulation of cholesterol 7α-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classical pathway of bile acid synthesis, has been implicated in plasma cholesterol responsiveness. In the current study, the effects of 0.0% and 0.5% cholesterol diets were examined in Cyp7a1 knockout (KO), heterozygous Cyp7a1 KO (Het), and human Cyp7a1 transgenic mice on the mouse Cyp7a1 KO background (Tg+KO). We confirmed previous findings that dietary cholesterol increased mouse Cyp7a1 activity in Het mice but decreased human Cyp7a1 activity in Tg+KO mice. However, in both Het and Tg+KO mice, dietary cholesterol increased bile acid pool size (36% and 72%, respectively) and fecal bile acid excretion (2.2- and 3.6-fold, respectively). The expression of cholesterol 27-hydroxylase (Cyp27), the major enzyme of the alternative pathway of bile acid synthesis, was not significantly different in cholesterol-fed KO, Het, or Tg+KO mice. Furthermore, dietary cholesterol had comparable effects on total plasma cholesterol and non-high-density lipoprotein cholesterol in KO, Het, and Tg+KO mice. Thus, in Tg+KO mice, dietary cholesterol regulates bile acid pool size, fecal bile acid excretion, and plasma cholesterol independently of Cyp7a1 activity. These results challenge the notion that dietary cholesterol regulation of Cyp7a1 is a major determinant of plasma cholesterol responsiveness.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0308426100