Loading…
High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA
Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2004-06, Vol.101 (25), p.9491-9496 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553 |
container_end_page | 9496 |
container_issue | 25 |
container_start_page | 9491 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 101 |
creator | Zhang, Zheng Dmitrieva, Natalia I. Park, Jong-Hwan Levine, Rodney L. Burg, Maurice B. |
description | Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now tested whether high urea or NaCl causes oxidative damage to DNA or cellular proteins. We find that high urea increases mIMCD3 cell DNA single-strand breaks and 8-oxoguanine lesions. High NaCl does not cause detectable 8-oxoguanine lesions. High urea or NaCl also greatly increases carbonylation of proteins in mIMCD3 cells. Carbonylation occurs within 5 min and with as little as 5 mM urea, a normal plasma level. It increases as urea is raised over the range in uremia. A high raffinose level increases ROS and carbonylation. High sorbitol and glycerol levels do not increase ROS or carbonylation. Carbonyl content is high in mouse renal inner medullas where interstitial NaCl and urea concentrations are normally high. There, numerous proteins are carbonylated, and carbonylation occurs in both collecting ducts and thin limbs. Conclusions: (i) Oxidative stress, associated with high urea, causes 8-oxoguanine DNA lesions in mIMCD3 cell DNA. (ii) High urea or NaCl carbonylates proteins in mIMCD3 cells and in renal inner medullary cells in vivo. (iii) In mIMCD3 cells a normal plasma concentration of urea causes carbonylation, and carbonylation increases over the uremic range of urea concentration, indicating that urea can contribute directly to the carbonylation found in uremia. |
doi_str_mv | 10.1073/pnas.0402961101 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_3372678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372678</jstor_id><sourcerecordid>3372678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhzAWBxQFxIO04duL4wKEKf4q0ahFqz5aTTHa9ytqLnazaD8D3JtlddYEDF1tP83tPo3mEvGRwxkDy840z8QwEpCpnDNgjMmOgWJILBY_JDCCVSSFScUKexbgCAJUV8JScsIwpYAWfkV-XdrGktwENNa6hV6bsaGlC5d19Z3qk34Pv0bpIraM_0Jlxil23k-XQ9UPAnW-UW7v1H3biGFmaIWKkRXJ95xeDcdYhnWO0fh94s0Qb6Keri-fkSWu6iC8O_ym5_fL5prxM5tdfv5UX86QWWd6PLxpT86pqGEolJeRCpqzBtlFtwxFlJrFpKpUXsql4JQRPsVKQM9myos0yfko-7nM3Q7XGpkbXB9PpTbBrE-61N1b_PXF2qRd-qwVXAGL0vzv4g_85YOz12sZ6PIhx6IeomVQqU7wYwbf_gCs_hPF8UafABPBMTmnne6gOPsaA7cMiDPRUr57q1cd6R8frP_c_8oc-R-DNAZicxzim00wroaaI9_8ndDt0XY93_Yi-2qOr2PvwwHIu01wW_DfXsMLp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201403574</pqid></control><display><type>article</type><title>High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Zhang, Zheng ; Dmitrieva, Natalia I. ; Park, Jong-Hwan ; Levine, Rodney L. ; Burg, Maurice B.</creator><creatorcontrib>Zhang, Zheng ; Dmitrieva, Natalia I. ; Park, Jong-Hwan ; Levine, Rodney L. ; Burg, Maurice B.</creatorcontrib><description>Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now tested whether high urea or NaCl causes oxidative damage to DNA or cellular proteins. We find that high urea increases mIMCD3 cell DNA single-strand breaks and 8-oxoguanine lesions. High NaCl does not cause detectable 8-oxoguanine lesions. High urea or NaCl also greatly increases carbonylation of proteins in mIMCD3 cells. Carbonylation occurs within 5 min and with as little as 5 mM urea, a normal plasma level. It increases as urea is raised over the range in uremia. A high raffinose level increases ROS and carbonylation. High sorbitol and glycerol levels do not increase ROS or carbonylation. Carbonyl content is high in mouse renal inner medullas where interstitial NaCl and urea concentrations are normally high. There, numerous proteins are carbonylated, and carbonylation occurs in both collecting ducts and thin limbs. Conclusions: (i) Oxidative stress, associated with high urea, causes 8-oxoguanine DNA lesions in mIMCD3 cell DNA. (ii) High urea or NaCl carbonylates proteins in mIMCD3 cells and in renal inner medullary cells in vivo. (iii) In mIMCD3 cells a normal plasma concentration of urea causes carbonylation, and carbonylation increases over the uremic range of urea concentration, indicating that urea can contribute directly to the carbonylation found in uremia.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0402961101</identifier><identifier>PMID: 15190183</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell culture techniques ; Cells, Cultured ; Comet Assay ; Comets ; Cyanates ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Damage - drug effects ; Glycerol - pharmacology ; Guanine - analogs & derivatives ; Guanine - analysis ; Kidney - cytology ; Kidney - metabolism ; Kidney cells ; Kidney Medulla - cytology ; Kidney Medulla - drug effects ; Kidney Medulla - metabolism ; Kidneys ; Lesions ; Mice ; Oxidation ; Oxidative stress ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Rodents ; Sodium ; Sodium Chloride - pharmacology ; Sorbitol - pharmacology ; Urea - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (25), p.9491-9496</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 22, 2004</rights><rights>2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553</citedby><cites>FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372678$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372678$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15190183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Dmitrieva, Natalia I.</creatorcontrib><creatorcontrib>Park, Jong-Hwan</creatorcontrib><creatorcontrib>Levine, Rodney L.</creatorcontrib><creatorcontrib>Burg, Maurice B.</creatorcontrib><title>High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now tested whether high urea or NaCl causes oxidative damage to DNA or cellular proteins. We find that high urea increases mIMCD3 cell DNA single-strand breaks and 8-oxoguanine lesions. High NaCl does not cause detectable 8-oxoguanine lesions. High urea or NaCl also greatly increases carbonylation of proteins in mIMCD3 cells. Carbonylation occurs within 5 min and with as little as 5 mM urea, a normal plasma level. It increases as urea is raised over the range in uremia. A high raffinose level increases ROS and carbonylation. High sorbitol and glycerol levels do not increase ROS or carbonylation. Carbonyl content is high in mouse renal inner medullas where interstitial NaCl and urea concentrations are normally high. There, numerous proteins are carbonylated, and carbonylation occurs in both collecting ducts and thin limbs. Conclusions: (i) Oxidative stress, associated with high urea, causes 8-oxoguanine DNA lesions in mIMCD3 cell DNA. (ii) High urea or NaCl carbonylates proteins in mIMCD3 cells and in renal inner medullary cells in vivo. (iii) In mIMCD3 cells a normal plasma concentration of urea causes carbonylation, and carbonylation increases over the uremic range of urea concentration, indicating that urea can contribute directly to the carbonylation found in uremia.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell culture techniques</subject><subject>Cells, Cultured</subject><subject>Comet Assay</subject><subject>Comets</subject><subject>Cyanates</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - drug effects</subject><subject>Glycerol - pharmacology</subject><subject>Guanine - analogs & derivatives</subject><subject>Guanine - analysis</subject><subject>Kidney - cytology</subject><subject>Kidney - metabolism</subject><subject>Kidney cells</subject><subject>Kidney Medulla - cytology</subject><subject>Kidney Medulla - drug effects</subject><subject>Kidney Medulla - metabolism</subject><subject>Kidneys</subject><subject>Lesions</subject><subject>Mice</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><subject>Sodium</subject><subject>Sodium Chloride - pharmacology</subject><subject>Sorbitol - pharmacology</subject><subject>Urea - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EokvhzAWBxQFxIO04duL4wKEKf4q0ahFqz5aTTHa9ytqLnazaD8D3JtlddYEDF1tP83tPo3mEvGRwxkDy840z8QwEpCpnDNgjMmOgWJILBY_JDCCVSSFScUKexbgCAJUV8JScsIwpYAWfkV-XdrGktwENNa6hV6bsaGlC5d19Z3qk34Pv0bpIraM_0Jlxil23k-XQ9UPAnW-UW7v1H3biGFmaIWKkRXJ95xeDcdYhnWO0fh94s0Qb6Keri-fkSWu6iC8O_ym5_fL5prxM5tdfv5UX86QWWd6PLxpT86pqGEolJeRCpqzBtlFtwxFlJrFpKpUXsql4JQRPsVKQM9myos0yfko-7nM3Q7XGpkbXB9PpTbBrE-61N1b_PXF2qRd-qwVXAGL0vzv4g_85YOz12sZ6PIhx6IeomVQqU7wYwbf_gCs_hPF8UafABPBMTmnne6gOPsaA7cMiDPRUr57q1cd6R8frP_c_8oc-R-DNAZicxzim00wroaaI9_8ndDt0XY93_Yi-2qOr2PvwwHIu01wW_DfXsMLp</recordid><startdate>20040622</startdate><enddate>20040622</enddate><creator>Zhang, Zheng</creator><creator>Dmitrieva, Natalia I.</creator><creator>Park, Jong-Hwan</creator><creator>Levine, Rodney L.</creator><creator>Burg, Maurice B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20040622</creationdate><title>High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA</title><author>Zhang, Zheng ; Dmitrieva, Natalia I. ; Park, Jong-Hwan ; Levine, Rodney L. ; Burg, Maurice B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell culture techniques</topic><topic>Cells, Cultured</topic><topic>Comet Assay</topic><topic>Comets</topic><topic>Cyanates</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - drug effects</topic><topic>Glycerol - pharmacology</topic><topic>Guanine - analogs & derivatives</topic><topic>Guanine - analysis</topic><topic>Kidney - cytology</topic><topic>Kidney - metabolism</topic><topic>Kidney cells</topic><topic>Kidney Medulla - cytology</topic><topic>Kidney Medulla - drug effects</topic><topic>Kidney Medulla - metabolism</topic><topic>Kidneys</topic><topic>Lesions</topic><topic>Mice</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><topic>Sodium</topic><topic>Sodium Chloride - pharmacology</topic><topic>Sorbitol - pharmacology</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Dmitrieva, Natalia I.</creatorcontrib><creatorcontrib>Park, Jong-Hwan</creatorcontrib><creatorcontrib>Levine, Rodney L.</creatorcontrib><creatorcontrib>Burg, Maurice B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zheng</au><au>Dmitrieva, Natalia I.</au><au>Park, Jong-Hwan</au><au>Levine, Rodney L.</au><au>Burg, Maurice B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-06-22</date><risdate>2004</risdate><volume>101</volume><issue>25</issue><spage>9491</spage><epage>9496</epage><pages>9491-9496</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now tested whether high urea or NaCl causes oxidative damage to DNA or cellular proteins. We find that high urea increases mIMCD3 cell DNA single-strand breaks and 8-oxoguanine lesions. High NaCl does not cause detectable 8-oxoguanine lesions. High urea or NaCl also greatly increases carbonylation of proteins in mIMCD3 cells. Carbonylation occurs within 5 min and with as little as 5 mM urea, a normal plasma level. It increases as urea is raised over the range in uremia. A high raffinose level increases ROS and carbonylation. High sorbitol and glycerol levels do not increase ROS or carbonylation. Carbonyl content is high in mouse renal inner medullas where interstitial NaCl and urea concentrations are normally high. There, numerous proteins are carbonylated, and carbonylation occurs in both collecting ducts and thin limbs. Conclusions: (i) Oxidative stress, associated with high urea, causes 8-oxoguanine DNA lesions in mIMCD3 cell DNA. (ii) High urea or NaCl carbonylates proteins in mIMCD3 cells and in renal inner medullary cells in vivo. (iii) In mIMCD3 cells a normal plasma concentration of urea causes carbonylation, and carbonylation increases over the uremic range of urea concentration, indicating that urea can contribute directly to the carbonylation found in uremia.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15190183</pmid><doi>10.1073/pnas.0402961101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (25), p.9491-9496 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_3372678 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection |
subjects | Animals Biological Sciences Cell culture techniques Cells, Cultured Comet Assay Comets Cyanates Deoxyribonucleic acid DNA DNA damage DNA Damage - drug effects Glycerol - pharmacology Guanine - analogs & derivatives Guanine - analysis Kidney - cytology Kidney - metabolism Kidney cells Kidney Medulla - cytology Kidney Medulla - drug effects Kidney Medulla - metabolism Kidneys Lesions Mice Oxidation Oxidative stress Proteins Reactive oxygen species Reactive Oxygen Species - metabolism Rodents Sodium Sodium Chloride - pharmacology Sorbitol - pharmacology Urea - pharmacology |
title | High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Urea%20and%20NaCl%20Carbonylate%20Proteins%20in%20Renal%20Cells%20in%20Culture%20and%20in%20vivo,%20and%20High%20Urea%20Causes%208-Oxoguanine%20Lesions%20in%20Their%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhang,%20Zheng&rft.date=2004-06-22&rft.volume=101&rft.issue=25&rft.spage=9491&rft.epage=9496&rft.pages=9491-9496&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0402961101&rft_dat=%3Cjstor_pubme%3E3372678%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201403574&rft_id=info:pmid/15190183&rft_jstor_id=3372678&rfr_iscdi=true |