Loading…

High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA

Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2004-06, Vol.101 (25), p.9491-9496
Main Authors: Zhang, Zheng, Dmitrieva, Natalia I., Park, Jong-Hwan, Levine, Rodney L., Burg, Maurice B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553
cites cdi_FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553
container_end_page 9496
container_issue 25
container_start_page 9491
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Zhang, Zheng
Dmitrieva, Natalia I.
Park, Jong-Hwan
Levine, Rodney L.
Burg, Maurice B.
description Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now tested whether high urea or NaCl causes oxidative damage to DNA or cellular proteins. We find that high urea increases mIMCD3 cell DNA single-strand breaks and 8-oxoguanine lesions. High NaCl does not cause detectable 8-oxoguanine lesions. High urea or NaCl also greatly increases carbonylation of proteins in mIMCD3 cells. Carbonylation occurs within 5 min and with as little as 5 mM urea, a normal plasma level. It increases as urea is raised over the range in uremia. A high raffinose level increases ROS and carbonylation. High sorbitol and glycerol levels do not increase ROS or carbonylation. Carbonyl content is high in mouse renal inner medullas where interstitial NaCl and urea concentrations are normally high. There, numerous proteins are carbonylated, and carbonylation occurs in both collecting ducts and thin limbs. Conclusions: (i) Oxidative stress, associated with high urea, causes 8-oxoguanine DNA lesions in mIMCD3 cell DNA. (ii) High urea or NaCl carbonylates proteins in mIMCD3 cells and in renal inner medullary cells in vivo. (iii) In mIMCD3 cells a normal plasma concentration of urea causes carbonylation, and carbonylation increases over the uremic range of urea concentration, indicating that urea can contribute directly to the carbonylation found in uremia.
doi_str_mv 10.1073/pnas.0402961101
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_3372678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372678</jstor_id><sourcerecordid>3372678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhzAWBxQFxIO04duL4wKEKf4q0ahFqz5aTTHa9ytqLnazaD8D3JtlddYEDF1tP83tPo3mEvGRwxkDy840z8QwEpCpnDNgjMmOgWJILBY_JDCCVSSFScUKexbgCAJUV8JScsIwpYAWfkV-XdrGktwENNa6hV6bsaGlC5d19Z3qk34Pv0bpIraM_0Jlxil23k-XQ9UPAnW-UW7v1H3biGFmaIWKkRXJ95xeDcdYhnWO0fh94s0Qb6Keri-fkSWu6iC8O_ym5_fL5prxM5tdfv5UX86QWWd6PLxpT86pqGEolJeRCpqzBtlFtwxFlJrFpKpUXsql4JQRPsVKQM9myos0yfko-7nM3Q7XGpkbXB9PpTbBrE-61N1b_PXF2qRd-qwVXAGL0vzv4g_85YOz12sZ6PIhx6IeomVQqU7wYwbf_gCs_hPF8UafABPBMTmnne6gOPsaA7cMiDPRUr57q1cd6R8frP_c_8oc-R-DNAZicxzim00wroaaI9_8ndDt0XY93_Yi-2qOr2PvwwHIu01wW_DfXsMLp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201403574</pqid></control><display><type>article</type><title>High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Zhang, Zheng ; Dmitrieva, Natalia I. ; Park, Jong-Hwan ; Levine, Rodney L. ; Burg, Maurice B.</creator><creatorcontrib>Zhang, Zheng ; Dmitrieva, Natalia I. ; Park, Jong-Hwan ; Levine, Rodney L. ; Burg, Maurice B.</creatorcontrib><description>Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now tested whether high urea or NaCl causes oxidative damage to DNA or cellular proteins. We find that high urea increases mIMCD3 cell DNA single-strand breaks and 8-oxoguanine lesions. High NaCl does not cause detectable 8-oxoguanine lesions. High urea or NaCl also greatly increases carbonylation of proteins in mIMCD3 cells. Carbonylation occurs within 5 min and with as little as 5 mM urea, a normal plasma level. It increases as urea is raised over the range in uremia. A high raffinose level increases ROS and carbonylation. High sorbitol and glycerol levels do not increase ROS or carbonylation. Carbonyl content is high in mouse renal inner medullas where interstitial NaCl and urea concentrations are normally high. There, numerous proteins are carbonylated, and carbonylation occurs in both collecting ducts and thin limbs. Conclusions: (i) Oxidative stress, associated with high urea, causes 8-oxoguanine DNA lesions in mIMCD3 cell DNA. (ii) High urea or NaCl carbonylates proteins in mIMCD3 cells and in renal inner medullary cells in vivo. (iii) In mIMCD3 cells a normal plasma concentration of urea causes carbonylation, and carbonylation increases over the uremic range of urea concentration, indicating that urea can contribute directly to the carbonylation found in uremia.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0402961101</identifier><identifier>PMID: 15190183</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell culture techniques ; Cells, Cultured ; Comet Assay ; Comets ; Cyanates ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Damage - drug effects ; Glycerol - pharmacology ; Guanine - analogs &amp; derivatives ; Guanine - analysis ; Kidney - cytology ; Kidney - metabolism ; Kidney cells ; Kidney Medulla - cytology ; Kidney Medulla - drug effects ; Kidney Medulla - metabolism ; Kidneys ; Lesions ; Mice ; Oxidation ; Oxidative stress ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Rodents ; Sodium ; Sodium Chloride - pharmacology ; Sorbitol - pharmacology ; Urea - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (25), p.9491-9496</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 22, 2004</rights><rights>2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553</citedby><cites>FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372678$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372678$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15190183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Dmitrieva, Natalia I.</creatorcontrib><creatorcontrib>Park, Jong-Hwan</creatorcontrib><creatorcontrib>Levine, Rodney L.</creatorcontrib><creatorcontrib>Burg, Maurice B.</creatorcontrib><title>High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now tested whether high urea or NaCl causes oxidative damage to DNA or cellular proteins. We find that high urea increases mIMCD3 cell DNA single-strand breaks and 8-oxoguanine lesions. High NaCl does not cause detectable 8-oxoguanine lesions. High urea or NaCl also greatly increases carbonylation of proteins in mIMCD3 cells. Carbonylation occurs within 5 min and with as little as 5 mM urea, a normal plasma level. It increases as urea is raised over the range in uremia. A high raffinose level increases ROS and carbonylation. High sorbitol and glycerol levels do not increase ROS or carbonylation. Carbonyl content is high in mouse renal inner medullas where interstitial NaCl and urea concentrations are normally high. There, numerous proteins are carbonylated, and carbonylation occurs in both collecting ducts and thin limbs. Conclusions: (i) Oxidative stress, associated with high urea, causes 8-oxoguanine DNA lesions in mIMCD3 cell DNA. (ii) High urea or NaCl carbonylates proteins in mIMCD3 cells and in renal inner medullary cells in vivo. (iii) In mIMCD3 cells a normal plasma concentration of urea causes carbonylation, and carbonylation increases over the uremic range of urea concentration, indicating that urea can contribute directly to the carbonylation found in uremia.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell culture techniques</subject><subject>Cells, Cultured</subject><subject>Comet Assay</subject><subject>Comets</subject><subject>Cyanates</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - drug effects</subject><subject>Glycerol - pharmacology</subject><subject>Guanine - analogs &amp; derivatives</subject><subject>Guanine - analysis</subject><subject>Kidney - cytology</subject><subject>Kidney - metabolism</subject><subject>Kidney cells</subject><subject>Kidney Medulla - cytology</subject><subject>Kidney Medulla - drug effects</subject><subject>Kidney Medulla - metabolism</subject><subject>Kidneys</subject><subject>Lesions</subject><subject>Mice</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><subject>Sodium</subject><subject>Sodium Chloride - pharmacology</subject><subject>Sorbitol - pharmacology</subject><subject>Urea - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EokvhzAWBxQFxIO04duL4wKEKf4q0ahFqz5aTTHa9ytqLnazaD8D3JtlddYEDF1tP83tPo3mEvGRwxkDy840z8QwEpCpnDNgjMmOgWJILBY_JDCCVSSFScUKexbgCAJUV8JScsIwpYAWfkV-XdrGktwENNa6hV6bsaGlC5d19Z3qk34Pv0bpIraM_0Jlxil23k-XQ9UPAnW-UW7v1H3biGFmaIWKkRXJ95xeDcdYhnWO0fh94s0Qb6Keri-fkSWu6iC8O_ym5_fL5prxM5tdfv5UX86QWWd6PLxpT86pqGEolJeRCpqzBtlFtwxFlJrFpKpUXsql4JQRPsVKQM9myos0yfko-7nM3Q7XGpkbXB9PpTbBrE-61N1b_PXF2qRd-qwVXAGL0vzv4g_85YOz12sZ6PIhx6IeomVQqU7wYwbf_gCs_hPF8UafABPBMTmnne6gOPsaA7cMiDPRUr57q1cd6R8frP_c_8oc-R-DNAZicxzim00wroaaI9_8ndDt0XY93_Yi-2qOr2PvwwHIu01wW_DfXsMLp</recordid><startdate>20040622</startdate><enddate>20040622</enddate><creator>Zhang, Zheng</creator><creator>Dmitrieva, Natalia I.</creator><creator>Park, Jong-Hwan</creator><creator>Levine, Rodney L.</creator><creator>Burg, Maurice B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20040622</creationdate><title>High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA</title><author>Zhang, Zheng ; Dmitrieva, Natalia I. ; Park, Jong-Hwan ; Levine, Rodney L. ; Burg, Maurice B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell culture techniques</topic><topic>Cells, Cultured</topic><topic>Comet Assay</topic><topic>Comets</topic><topic>Cyanates</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - drug effects</topic><topic>Glycerol - pharmacology</topic><topic>Guanine - analogs &amp; derivatives</topic><topic>Guanine - analysis</topic><topic>Kidney - cytology</topic><topic>Kidney - metabolism</topic><topic>Kidney cells</topic><topic>Kidney Medulla - cytology</topic><topic>Kidney Medulla - drug effects</topic><topic>Kidney Medulla - metabolism</topic><topic>Kidneys</topic><topic>Lesions</topic><topic>Mice</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><topic>Sodium</topic><topic>Sodium Chloride - pharmacology</topic><topic>Sorbitol - pharmacology</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Dmitrieva, Natalia I.</creatorcontrib><creatorcontrib>Park, Jong-Hwan</creatorcontrib><creatorcontrib>Levine, Rodney L.</creatorcontrib><creatorcontrib>Burg, Maurice B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zheng</au><au>Dmitrieva, Natalia I.</au><au>Park, Jong-Hwan</au><au>Levine, Rodney L.</au><au>Burg, Maurice B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-06-22</date><risdate>2004</risdate><volume>101</volume><issue>25</issue><spage>9491</spage><epage>9496</epage><pages>9491-9496</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Urea and NaCl are elevated in the renal inner medulla. We now find that a high concentration of urea or NaCl increases reactive oxygen species (ROS) in mouse renal inner medullary (mIMCD3) cells in culture. Previously, high NaCl, but not high urea, was found to cause DNA double-strand breaks. We now tested whether high urea or NaCl causes oxidative damage to DNA or cellular proteins. We find that high urea increases mIMCD3 cell DNA single-strand breaks and 8-oxoguanine lesions. High NaCl does not cause detectable 8-oxoguanine lesions. High urea or NaCl also greatly increases carbonylation of proteins in mIMCD3 cells. Carbonylation occurs within 5 min and with as little as 5 mM urea, a normal plasma level. It increases as urea is raised over the range in uremia. A high raffinose level increases ROS and carbonylation. High sorbitol and glycerol levels do not increase ROS or carbonylation. Carbonyl content is high in mouse renal inner medullas where interstitial NaCl and urea concentrations are normally high. There, numerous proteins are carbonylated, and carbonylation occurs in both collecting ducts and thin limbs. Conclusions: (i) Oxidative stress, associated with high urea, causes 8-oxoguanine DNA lesions in mIMCD3 cell DNA. (ii) High urea or NaCl carbonylates proteins in mIMCD3 cells and in renal inner medullary cells in vivo. (iii) In mIMCD3 cells a normal plasma concentration of urea causes carbonylation, and carbonylation increases over the uremic range of urea concentration, indicating that urea can contribute directly to the carbonylation found in uremia.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15190183</pmid><doi>10.1073/pnas.0402961101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-06, Vol.101 (25), p.9491-9496
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_3372678
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects Animals
Biological Sciences
Cell culture techniques
Cells, Cultured
Comet Assay
Comets
Cyanates
Deoxyribonucleic acid
DNA
DNA damage
DNA Damage - drug effects
Glycerol - pharmacology
Guanine - analogs & derivatives
Guanine - analysis
Kidney - cytology
Kidney - metabolism
Kidney cells
Kidney Medulla - cytology
Kidney Medulla - drug effects
Kidney Medulla - metabolism
Kidneys
Lesions
Mice
Oxidation
Oxidative stress
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Rodents
Sodium
Sodium Chloride - pharmacology
Sorbitol - pharmacology
Urea - pharmacology
title High Urea and NaCl Carbonylate Proteins in Renal Cells in Culture and in vivo, and High Urea Causes 8-Oxoguanine Lesions in Their DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Urea%20and%20NaCl%20Carbonylate%20Proteins%20in%20Renal%20Cells%20in%20Culture%20and%20in%20vivo,%20and%20High%20Urea%20Causes%208-Oxoguanine%20Lesions%20in%20Their%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhang,%20Zheng&rft.date=2004-06-22&rft.volume=101&rft.issue=25&rft.spage=9491&rft.epage=9496&rft.pages=9491-9496&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0402961101&rft_dat=%3Cjstor_pubme%3E3372678%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-c4eaac3bbd1e7977064721defd9fd3ee757eddb9687db3b4432eb90617f18f553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201403574&rft_id=info:pmid/15190183&rft_jstor_id=3372678&rfr_iscdi=true