Loading…
Is there a thalamic component to experience–dependent cortical plasticity?
Sensory deprivation and injury to the peripheral nervous system both induce plasticity in the somatosensory system of adult animals, but in different places. While injury induces plasticity at several locations within the ascending somatosensory pathways, sensory deprivation appears only to affect t...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2002-12, Vol.357 (1428), p.1709-1715 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sensory deprivation and injury to the peripheral nervous system both induce plasticity in the somatosensory system of adult animals, but in different places. While injury induces plasticity at several locations within the ascending somatosensory pathways, sensory deprivation appears only to affect the somatosensory cortex. Experiments have been performed to detect experience-dependent plasticity in thalamic receptive fields, thalamic domain sizes and convergence of thalamic receptive fields onto cortical cells. So far, plasticity has not been detected with sensory deprivation paradigms that cause substantial cortical plasticity. Part of the reason for the lack of thalamic plasticity may lie in the synaptic properties of afferent systems to the thalamus. A second factor may lie in the differences in the organization of cortical and thalamic circuits. Many deprivation paradigms induce plasticity by decreasing phasic lateral inhibition. Since lateral inhibition appears to be far weaker in the thalamus than the cortex, sensory deprivation may not cause large enough imbalances in thalamic activity to induce plasticity in the thalamus. |
---|---|
ISSN: | 0962-8436 1471-2970 |
DOI: | 10.1098/rstb.2002.1169 |