Loading…

Positive force feedback in bouncing gaits?

During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. T...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2003-10, Vol.270 (1529), p.2173-2183
Main Authors: Geyer, Hartmut, Seyfarth, Andre, Blickhan, Reinhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923
cites cdi_FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923
container_end_page 2183
container_issue 1529
container_start_page 2173
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 270
creator Geyer, Hartmut
Seyfarth, Andre
Blickhan, Reinhard
description During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9−27 kN m−1). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands.
doi_str_mv 10.1098/rspb.2003.2454
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_3592152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3592152</jstor_id><sourcerecordid>3592152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIRNPClRNCOXGotMGfa_tCQRG0iEogFRC3ke31Jk4362DvFvLf47BRIAfgYsuaNz-_mVcUTzCaYaTki5g2ZkYQojPCOLtXTDATuCSKs_vFBKmKlJJxclKcprRCCCku-cPiBDNeYSLJpDj_GJLv_Z2bNiHafDpXG21vp76bmjB01neL6UL7Pl08Kh40uk3u8f4-Kz6_ffNpflVef7h8N399XdqKoL6UlikuXFVpSqzUCBttKHdGUkGEZrUQHCmUDRiJcVUb51BDnaqN0VhYRehZ8XLkbgazdrV1XR91C5vo1zpuIWgPx5XOL2ER7gBXCjNFM-D5HhDDt8GlHtY-Wde2unNhSCDy6Bjx_wuxVJwQUmXhbBTaGFKKrjm4wQh2OcAuB9jlALsccsOzP2f4Ld8vPgvoKIhhm5cZrHf9FlZhiF1-_h37dOxapT7EA5VyRTDfQcux7FPvfhzKOt5CJajg8EUyoOLq8mb-9T3cZP2rUb_0i-V3Hx0cufn1uQ1dn_cMRGRLnCggWFBohjYnUjcZQf6JCNtNTOa4m_4EzqPWlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18952226</pqid></control><display><type>article</type><title>Positive force feedback in bouncing gaits?</title><source>PubMed Central (Open Access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Geyer, Hartmut ; Seyfarth, Andre ; Blickhan, Reinhard</creator><creatorcontrib>Geyer, Hartmut ; Seyfarth, Andre ; Blickhan, Reinhard</creatorcontrib><description>During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9−27 kN m−1). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2003.2454</identifier><identifier>PMID: 14561282</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Babinski reflex ; Biomechanical Phenomena ; Biomechanics ; Forced feeding ; Gait ; Gait - physiology ; Humans ; Leg Stiffness ; Legs ; Locomotion ; Models, Biological ; Motor Control ; Muscle Contraction - physiology ; Muscle Reflex ; Muscle, Skeletal - physiology ; Muscles ; Propagation delay ; Reflex, Stretch - physiology ; Robust Running ; Running - physiology ; Self-Stability ; Stiffness ; Tendons ; Tendons - physiology ; Walking</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2003-10, Vol.270 (1529), p.2173-2183</ispartof><rights>Copyright 2003 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923</citedby><cites>FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3592152$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3592152$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14561282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geyer, Hartmut</creatorcontrib><creatorcontrib>Seyfarth, Andre</creatorcontrib><creatorcontrib>Blickhan, Reinhard</creatorcontrib><title>Positive force feedback in bouncing gaits?</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc Biol Sci</addtitle><description>During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9−27 kN m−1). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands.</description><subject>Babinski reflex</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Forced feeding</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Humans</subject><subject>Leg Stiffness</subject><subject>Legs</subject><subject>Locomotion</subject><subject>Models, Biological</subject><subject>Motor Control</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Reflex</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Propagation delay</subject><subject>Reflex, Stretch - physiology</subject><subject>Robust Running</subject><subject>Running - physiology</subject><subject>Self-Stability</subject><subject>Stiffness</subject><subject>Tendons</subject><subject>Tendons - physiology</subject><subject>Walking</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkc1vEzEQxVcIRNPClRNCOXGotMGfa_tCQRG0iEogFRC3ke31Jk4362DvFvLf47BRIAfgYsuaNz-_mVcUTzCaYaTki5g2ZkYQojPCOLtXTDATuCSKs_vFBKmKlJJxclKcprRCCCku-cPiBDNeYSLJpDj_GJLv_Z2bNiHafDpXG21vp76bmjB01neL6UL7Pl08Kh40uk3u8f4-Kz6_ffNpflVef7h8N399XdqKoL6UlikuXFVpSqzUCBttKHdGUkGEZrUQHCmUDRiJcVUb51BDnaqN0VhYRehZ8XLkbgazdrV1XR91C5vo1zpuIWgPx5XOL2ER7gBXCjNFM-D5HhDDt8GlHtY-Wde2unNhSCDy6Bjx_wuxVJwQUmXhbBTaGFKKrjm4wQh2OcAuB9jlALsccsOzP2f4Ld8vPgvoKIhhm5cZrHf9FlZhiF1-_h37dOxapT7EA5VyRTDfQcux7FPvfhzKOt5CJajg8EUyoOLq8mb-9T3cZP2rUb_0i-V3Hx0cufn1uQ1dn_cMRGRLnCggWFBohjYnUjcZQf6JCNtNTOa4m_4EzqPWlg</recordid><startdate>20031022</startdate><enddate>20031022</enddate><creator>Geyer, Hartmut</creator><creator>Seyfarth, Andre</creator><creator>Blickhan, Reinhard</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031022</creationdate><title>Positive force feedback in bouncing gaits?</title><author>Geyer, Hartmut ; Seyfarth, Andre ; Blickhan, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Babinski reflex</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Forced feeding</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Humans</topic><topic>Leg Stiffness</topic><topic>Legs</topic><topic>Locomotion</topic><topic>Models, Biological</topic><topic>Motor Control</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Reflex</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Propagation delay</topic><topic>Reflex, Stretch - physiology</topic><topic>Robust Running</topic><topic>Running - physiology</topic><topic>Self-Stability</topic><topic>Stiffness</topic><topic>Tendons</topic><topic>Tendons - physiology</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geyer, Hartmut</creatorcontrib><creatorcontrib>Seyfarth, Andre</creatorcontrib><creatorcontrib>Blickhan, Reinhard</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geyer, Hartmut</au><au>Seyfarth, Andre</au><au>Blickhan, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive force feedback in bouncing gaits?</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>Proc Biol Sci</addtitle><date>2003-10-22</date><risdate>2003</risdate><volume>270</volume><issue>1529</issue><spage>2173</spage><epage>2183</epage><pages>2173-2183</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9−27 kN m−1). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>14561282</pmid><doi>10.1098/rspb.2003.2454</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2003-10, Vol.270 (1529), p.2173-2183
issn 0962-8452
1471-2954
language eng
recordid cdi_jstor_primary_3592152
source PubMed Central (Open Access); JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Babinski reflex
Biomechanical Phenomena
Biomechanics
Forced feeding
Gait
Gait - physiology
Humans
Leg Stiffness
Legs
Locomotion
Models, Biological
Motor Control
Muscle Contraction - physiology
Muscle Reflex
Muscle, Skeletal - physiology
Muscles
Propagation delay
Reflex, Stretch - physiology
Robust Running
Running - physiology
Self-Stability
Stiffness
Tendons
Tendons - physiology
Walking
title Positive force feedback in bouncing gaits?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20force%20feedback%20in%20bouncing%20gaits?&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Geyer,%20Hartmut&rft.date=2003-10-22&rft.volume=270&rft.issue=1529&rft.spage=2173&rft.epage=2183&rft.pages=2173-2183&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2003.2454&rft_dat=%3Cjstor_proqu%3E3592152%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18952226&rft_id=info:pmid/14561282&rft_jstor_id=3592152&rfr_iscdi=true