Loading…
Positive force feedback in bouncing gaits?
During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. T...
Saved in:
Published in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2003-10, Vol.270 (1529), p.2173-2183 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923 |
---|---|
cites | cdi_FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923 |
container_end_page | 2183 |
container_issue | 1529 |
container_start_page | 2173 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 270 |
creator | Geyer, Hartmut Seyfarth, Andre Blickhan, Reinhard |
description | During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9−27 kN m−1). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands. |
doi_str_mv | 10.1098/rspb.2003.2454 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_3592152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3592152</jstor_id><sourcerecordid>3592152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIRNPClRNCOXGotMGfa_tCQRG0iEogFRC3ke31Jk4362DvFvLf47BRIAfgYsuaNz-_mVcUTzCaYaTki5g2ZkYQojPCOLtXTDATuCSKs_vFBKmKlJJxclKcprRCCCku-cPiBDNeYSLJpDj_GJLv_Z2bNiHafDpXG21vp76bmjB01neL6UL7Pl08Kh40uk3u8f4-Kz6_ffNpflVef7h8N399XdqKoL6UlikuXFVpSqzUCBttKHdGUkGEZrUQHCmUDRiJcVUb51BDnaqN0VhYRehZ8XLkbgazdrV1XR91C5vo1zpuIWgPx5XOL2ER7gBXCjNFM-D5HhDDt8GlHtY-Wde2unNhSCDy6Bjx_wuxVJwQUmXhbBTaGFKKrjm4wQh2OcAuB9jlALsccsOzP2f4Ld8vPgvoKIhhm5cZrHf9FlZhiF1-_h37dOxapT7EA5VyRTDfQcux7FPvfhzKOt5CJajg8EUyoOLq8mb-9T3cZP2rUb_0i-V3Hx0cufn1uQ1dn_cMRGRLnCggWFBohjYnUjcZQf6JCNtNTOa4m_4EzqPWlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18952226</pqid></control><display><type>article</type><title>Positive force feedback in bouncing gaits?</title><source>PubMed Central (Open Access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Geyer, Hartmut ; Seyfarth, Andre ; Blickhan, Reinhard</creator><creatorcontrib>Geyer, Hartmut ; Seyfarth, Andre ; Blickhan, Reinhard</creatorcontrib><description>During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9−27 kN m−1). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2003.2454</identifier><identifier>PMID: 14561282</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Babinski reflex ; Biomechanical Phenomena ; Biomechanics ; Forced feeding ; Gait ; Gait - physiology ; Humans ; Leg Stiffness ; Legs ; Locomotion ; Models, Biological ; Motor Control ; Muscle Contraction - physiology ; Muscle Reflex ; Muscle, Skeletal - physiology ; Muscles ; Propagation delay ; Reflex, Stretch - physiology ; Robust Running ; Running - physiology ; Self-Stability ; Stiffness ; Tendons ; Tendons - physiology ; Walking</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2003-10, Vol.270 (1529), p.2173-2183</ispartof><rights>Copyright 2003 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923</citedby><cites>FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3592152$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3592152$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14561282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geyer, Hartmut</creatorcontrib><creatorcontrib>Seyfarth, Andre</creatorcontrib><creatorcontrib>Blickhan, Reinhard</creatorcontrib><title>Positive force feedback in bouncing gaits?</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc Biol Sci</addtitle><description>During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9−27 kN m−1). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands.</description><subject>Babinski reflex</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Forced feeding</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Humans</subject><subject>Leg Stiffness</subject><subject>Legs</subject><subject>Locomotion</subject><subject>Models, Biological</subject><subject>Motor Control</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Reflex</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Propagation delay</subject><subject>Reflex, Stretch - physiology</subject><subject>Robust Running</subject><subject>Running - physiology</subject><subject>Self-Stability</subject><subject>Stiffness</subject><subject>Tendons</subject><subject>Tendons - physiology</subject><subject>Walking</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkc1vEzEQxVcIRNPClRNCOXGotMGfa_tCQRG0iEogFRC3ke31Jk4362DvFvLf47BRIAfgYsuaNz-_mVcUTzCaYaTki5g2ZkYQojPCOLtXTDATuCSKs_vFBKmKlJJxclKcprRCCCku-cPiBDNeYSLJpDj_GJLv_Z2bNiHafDpXG21vp76bmjB01neL6UL7Pl08Kh40uk3u8f4-Kz6_ffNpflVef7h8N399XdqKoL6UlikuXFVpSqzUCBttKHdGUkGEZrUQHCmUDRiJcVUb51BDnaqN0VhYRehZ8XLkbgazdrV1XR91C5vo1zpuIWgPx5XOL2ER7gBXCjNFM-D5HhDDt8GlHtY-Wde2unNhSCDy6Bjx_wuxVJwQUmXhbBTaGFKKrjm4wQh2OcAuB9jlALsccsOzP2f4Ld8vPgvoKIhhm5cZrHf9FlZhiF1-_h37dOxapT7EA5VyRTDfQcux7FPvfhzKOt5CJajg8EUyoOLq8mb-9T3cZP2rUb_0i-V3Hx0cufn1uQ1dn_cMRGRLnCggWFBohjYnUjcZQf6JCNtNTOa4m_4EzqPWlg</recordid><startdate>20031022</startdate><enddate>20031022</enddate><creator>Geyer, Hartmut</creator><creator>Seyfarth, Andre</creator><creator>Blickhan, Reinhard</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031022</creationdate><title>Positive force feedback in bouncing gaits?</title><author>Geyer, Hartmut ; Seyfarth, Andre ; Blickhan, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Babinski reflex</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Forced feeding</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Humans</topic><topic>Leg Stiffness</topic><topic>Legs</topic><topic>Locomotion</topic><topic>Models, Biological</topic><topic>Motor Control</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Reflex</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Propagation delay</topic><topic>Reflex, Stretch - physiology</topic><topic>Robust Running</topic><topic>Running - physiology</topic><topic>Self-Stability</topic><topic>Stiffness</topic><topic>Tendons</topic><topic>Tendons - physiology</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geyer, Hartmut</creatorcontrib><creatorcontrib>Seyfarth, Andre</creatorcontrib><creatorcontrib>Blickhan, Reinhard</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geyer, Hartmut</au><au>Seyfarth, Andre</au><au>Blickhan, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive force feedback in bouncing gaits?</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>Proc Biol Sci</addtitle><date>2003-10-22</date><risdate>2003</risdate><volume>270</volume><issue>1529</issue><spage>2173</spage><epage>2183</epage><pages>2173-2183</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two-segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle-fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4-3 Hz, leg stiffness of 9−27 kN m−1). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex-generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>14561282</pmid><doi>10.1098/rspb.2003.2454</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2003-10, Vol.270 (1529), p.2173-2183 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_jstor_primary_3592152 |
source | PubMed Central (Open Access); JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Babinski reflex Biomechanical Phenomena Biomechanics Forced feeding Gait Gait - physiology Humans Leg Stiffness Legs Locomotion Models, Biological Motor Control Muscle Contraction - physiology Muscle Reflex Muscle, Skeletal - physiology Muscles Propagation delay Reflex, Stretch - physiology Robust Running Running - physiology Self-Stability Stiffness Tendons Tendons - physiology Walking |
title | Positive force feedback in bouncing gaits? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20force%20feedback%20in%20bouncing%20gaits?&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Geyer,%20Hartmut&rft.date=2003-10-22&rft.volume=270&rft.issue=1529&rft.spage=2173&rft.epage=2183&rft.pages=2173-2183&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2003.2454&rft_dat=%3Cjstor_proqu%3E3592152%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c620t-8c4957e66a32c8a01bab35eb83727a4d775090456b8116dbee0f3e9dbba17c923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18952226&rft_id=info:pmid/14561282&rft_jstor_id=3592152&rfr_iscdi=true |