Loading…
Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity
The maximum size of organisms has increased enormously since the initial appearance of life >3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2009-01, Vol.106 (1), p.24-27 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3 |
container_end_page | 27 |
container_issue | 1 |
container_start_page | 24 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Payne, Jonathan L Boyer, Alison G Brown, James H Finnegan, Seth Kowalewski, Michał Krause, Richard A. Jr Lyons, S. Kathleen McClain, Craig R McShea, Daniel W Novack-Gottshall, Philip M Smith, Felisa A Stempien, Jennifer A Wang, Steve C |
description | The maximum size of organisms has increased enormously since the initial appearance of life >3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our period-level compilation of the largest known fossil organisms demonstrates that maximum size increased by 16 orders of magnitude since life first appeared in the fossil record. The great majority of the increase is accounted for by 2 discrete steps of approximately equal magnitude: the first in the middle of the Paleoproterozoic Era ([almost equal to]1.9 Gya) and the second during the late Neoproterozoic and early Paleozoic eras (0.6-0.45 Gya). Each size step required a major innovation in organismal complexity--first the eukaryotic cell and later eukaryotic multicellularity. These size steps coincide with, or slightly postdate, increases in the concentration of atmospheric oxygen, suggesting latent evolutionary potential was realized soon after environmental limitations were removed. |
doi_str_mv | 10.1073/pnas.0806314106 |
format | article |
fullrecord | <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_40272310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40272310</jstor_id><sourcerecordid>40272310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEokvhzIUPX-CW7dhxnORSCVV8SZU40J4tJzvedeXYwXaWLkd-OV7tqgsXTmPN-8w7Y4-L4iWFJYWmupiciktoQVSUUxCPigWFjpaCd_C4WACwpmw542fFsxjvAKCrW3hanNEuw6wTi-L3zU9fThsVkRg3BDwcSNogGdW9GeeRRPMLidfEGp3jFgOpljXpjbXGO7JDFSIJqC0OKea0t35tBmWzjfNblfaQciuCbmuCdyO6lEU_TT6k2Zm0e1480cpGfHGM58Xtp483V1_K62-fv159uC5V3TSp1LruBUPoVT9wpXmPLOdb1bOqozWjFRe677Bt6YADVQ1rRSNqJgTv21XDV9V5cXnwneZ-xNWQBwnKyimYUYWd9MrIfxVnNnLtt5IJaBgX2eD90SD4HzPGJEcTB7RWOfRzlEK0kPuxDF4cwCH4GPPbPDShIPd7k_u9ydPecsWbv2c78cdFZeDVEdhXnuyEpJLxLL_7jyz1bG3C-5S51wfuLiYfHkCePwqrKGT97UHXyku1DibK2-8MaAW0bjqe7_YHczTBWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66802662</pqid></control><display><type>article</type><title>Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Payne, Jonathan L ; Boyer, Alison G ; Brown, James H ; Finnegan, Seth ; Kowalewski, Michał ; Krause, Richard A. Jr ; Lyons, S. Kathleen ; McClain, Craig R ; McShea, Daniel W ; Novack-Gottshall, Philip M ; Smith, Felisa A ; Stempien, Jennifer A ; Wang, Steve C</creator><creatorcontrib>Payne, Jonathan L ; Boyer, Alison G ; Brown, James H ; Finnegan, Seth ; Kowalewski, Michał ; Krause, Richard A. Jr ; Lyons, S. Kathleen ; McClain, Craig R ; McShea, Daniel W ; Novack-Gottshall, Philip M ; Smith, Felisa A ; Stempien, Jennifer A ; Wang, Steve C</creatorcontrib><description>The maximum size of organisms has increased enormously since the initial appearance of life >3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our period-level compilation of the largest known fossil organisms demonstrates that maximum size increased by 16 orders of magnitude since life first appeared in the fossil record. The great majority of the increase is accounted for by 2 discrete steps of approximately equal magnitude: the first in the middle of the Paleoproterozoic Era ([almost equal to]1.9 Gya) and the second during the late Neoproterozoic and early Paleozoic eras (0.6-0.45 Gya). Each size step required a major innovation in organismal complexity--first the eukaryotic cell and later eukaryotic multicellularity. These size steps coincide with, or slightly postdate, increases in the concentration of atmospheric oxygen, suggesting latent evolutionary potential was realized soon after environmental limitations were removed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0806314106</identifier><identifier>PMID: 19106296</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Atmosphere ; Atmospherics ; Biological Evolution ; Biological Sciences ; Body size ; Body Size - genetics ; Environment ; Eukaryotic Cells ; Evolution ; Fossils ; Geology ; History, Ancient ; Oxygen ; Paleobiology ; Physical Sciences ; Precambrian strata</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-01, Vol.106 (1), p.24-27</ispartof><rights>2008 by The National Academy of Sciences of the USA 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3</citedby><cites>FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40272310$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40272310$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19106296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Payne, Jonathan L</creatorcontrib><creatorcontrib>Boyer, Alison G</creatorcontrib><creatorcontrib>Brown, James H</creatorcontrib><creatorcontrib>Finnegan, Seth</creatorcontrib><creatorcontrib>Kowalewski, Michał</creatorcontrib><creatorcontrib>Krause, Richard A. Jr</creatorcontrib><creatorcontrib>Lyons, S. Kathleen</creatorcontrib><creatorcontrib>McClain, Craig R</creatorcontrib><creatorcontrib>McShea, Daniel W</creatorcontrib><creatorcontrib>Novack-Gottshall, Philip M</creatorcontrib><creatorcontrib>Smith, Felisa A</creatorcontrib><creatorcontrib>Stempien, Jennifer A</creatorcontrib><creatorcontrib>Wang, Steve C</creatorcontrib><title>Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The maximum size of organisms has increased enormously since the initial appearance of life >3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our period-level compilation of the largest known fossil organisms demonstrates that maximum size increased by 16 orders of magnitude since life first appeared in the fossil record. The great majority of the increase is accounted for by 2 discrete steps of approximately equal magnitude: the first in the middle of the Paleoproterozoic Era ([almost equal to]1.9 Gya) and the second during the late Neoproterozoic and early Paleozoic eras (0.6-0.45 Gya). Each size step required a major innovation in organismal complexity--first the eukaryotic cell and later eukaryotic multicellularity. These size steps coincide with, or slightly postdate, increases in the concentration of atmospheric oxygen, suggesting latent evolutionary potential was realized soon after environmental limitations were removed.</description><subject>Animals</subject><subject>Atmosphere</subject><subject>Atmospherics</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Body size</subject><subject>Body Size - genetics</subject><subject>Environment</subject><subject>Eukaryotic Cells</subject><subject>Evolution</subject><subject>Fossils</subject><subject>Geology</subject><subject>History, Ancient</subject><subject>Oxygen</subject><subject>Paleobiology</subject><subject>Physical Sciences</subject><subject>Precambrian strata</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhiMEokvhzIUPX-CW7dhxnORSCVV8SZU40J4tJzvedeXYwXaWLkd-OV7tqgsXTmPN-8w7Y4-L4iWFJYWmupiciktoQVSUUxCPigWFjpaCd_C4WACwpmw542fFsxjvAKCrW3hanNEuw6wTi-L3zU9fThsVkRg3BDwcSNogGdW9GeeRRPMLidfEGp3jFgOpljXpjbXGO7JDFSIJqC0OKea0t35tBmWzjfNblfaQciuCbmuCdyO6lEU_TT6k2Zm0e1480cpGfHGM58Xtp483V1_K62-fv159uC5V3TSp1LruBUPoVT9wpXmPLOdb1bOqozWjFRe677Bt6YADVQ1rRSNqJgTv21XDV9V5cXnwneZ-xNWQBwnKyimYUYWd9MrIfxVnNnLtt5IJaBgX2eD90SD4HzPGJEcTB7RWOfRzlEK0kPuxDF4cwCH4GPPbPDShIPd7k_u9ydPecsWbv2c78cdFZeDVEdhXnuyEpJLxLL_7jyz1bG3C-5S51wfuLiYfHkCePwqrKGT97UHXyku1DibK2-8MaAW0bjqe7_YHczTBWA</recordid><startdate>20090106</startdate><enddate>20090106</enddate><creator>Payne, Jonathan L</creator><creator>Boyer, Alison G</creator><creator>Brown, James H</creator><creator>Finnegan, Seth</creator><creator>Kowalewski, Michał</creator><creator>Krause, Richard A. Jr</creator><creator>Lyons, S. Kathleen</creator><creator>McClain, Craig R</creator><creator>McShea, Daniel W</creator><creator>Novack-Gottshall, Philip M</creator><creator>Smith, Felisa A</creator><creator>Stempien, Jennifer A</creator><creator>Wang, Steve C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090106</creationdate><title>Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity</title><author>Payne, Jonathan L ; Boyer, Alison G ; Brown, James H ; Finnegan, Seth ; Kowalewski, Michał ; Krause, Richard A. Jr ; Lyons, S. Kathleen ; McClain, Craig R ; McShea, Daniel W ; Novack-Gottshall, Philip M ; Smith, Felisa A ; Stempien, Jennifer A ; Wang, Steve C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Atmosphere</topic><topic>Atmospherics</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Body size</topic><topic>Body Size - genetics</topic><topic>Environment</topic><topic>Eukaryotic Cells</topic><topic>Evolution</topic><topic>Fossils</topic><topic>Geology</topic><topic>History, Ancient</topic><topic>Oxygen</topic><topic>Paleobiology</topic><topic>Physical Sciences</topic><topic>Precambrian strata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Payne, Jonathan L</creatorcontrib><creatorcontrib>Boyer, Alison G</creatorcontrib><creatorcontrib>Brown, James H</creatorcontrib><creatorcontrib>Finnegan, Seth</creatorcontrib><creatorcontrib>Kowalewski, Michał</creatorcontrib><creatorcontrib>Krause, Richard A. Jr</creatorcontrib><creatorcontrib>Lyons, S. Kathleen</creatorcontrib><creatorcontrib>McClain, Craig R</creatorcontrib><creatorcontrib>McShea, Daniel W</creatorcontrib><creatorcontrib>Novack-Gottshall, Philip M</creatorcontrib><creatorcontrib>Smith, Felisa A</creatorcontrib><creatorcontrib>Stempien, Jennifer A</creatorcontrib><creatorcontrib>Wang, Steve C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Payne, Jonathan L</au><au>Boyer, Alison G</au><au>Brown, James H</au><au>Finnegan, Seth</au><au>Kowalewski, Michał</au><au>Krause, Richard A. Jr</au><au>Lyons, S. Kathleen</au><au>McClain, Craig R</au><au>McShea, Daniel W</au><au>Novack-Gottshall, Philip M</au><au>Smith, Felisa A</au><au>Stempien, Jennifer A</au><au>Wang, Steve C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-01-06</date><risdate>2009</risdate><volume>106</volume><issue>1</issue><spage>24</spage><epage>27</epage><pages>24-27</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The maximum size of organisms has increased enormously since the initial appearance of life >3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our period-level compilation of the largest known fossil organisms demonstrates that maximum size increased by 16 orders of magnitude since life first appeared in the fossil record. The great majority of the increase is accounted for by 2 discrete steps of approximately equal magnitude: the first in the middle of the Paleoproterozoic Era ([almost equal to]1.9 Gya) and the second during the late Neoproterozoic and early Paleozoic eras (0.6-0.45 Gya). Each size step required a major innovation in organismal complexity--first the eukaryotic cell and later eukaryotic multicellularity. These size steps coincide with, or slightly postdate, increases in the concentration of atmospheric oxygen, suggesting latent evolutionary potential was realized soon after environmental limitations were removed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19106296</pmid><doi>10.1073/pnas.0806314106</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-01, Vol.106 (1), p.24-27 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_40272310 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection |
subjects | Animals Atmosphere Atmospherics Biological Evolution Biological Sciences Body size Body Size - genetics Environment Eukaryotic Cells Evolution Fossils Geology History, Ancient Oxygen Paleobiology Physical Sciences Precambrian strata |
title | Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-phase%20increase%20in%20the%20maximum%20size%20of%20life%20over%203.5%20billion%20years%20reflects%20biological%20innovation%20and%20environmental%20opportunity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Payne,%20Jonathan%20L&rft.date=2009-01-06&rft.volume=106&rft.issue=1&rft.spage=24&rft.epage=27&rft.pages=24-27&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0806314106&rft_dat=%3Cjstor_fao_a%3E40272310%3C/jstor_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66802662&rft_id=info:pmid/19106296&rft_jstor_id=40272310&rfr_iscdi=true |