Loading…

Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity

The maximum size of organisms has increased enormously since the initial appearance of life >3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2009-01, Vol.106 (1), p.24-27
Main Authors: Payne, Jonathan L, Boyer, Alison G, Brown, James H, Finnegan, Seth, Kowalewski, Michał, Krause, Richard A. Jr, Lyons, S. Kathleen, McClain, Craig R, McShea, Daniel W, Novack-Gottshall, Philip M, Smith, Felisa A, Stempien, Jennifer A, Wang, Steve C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3
cites cdi_FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3
container_end_page 27
container_issue 1
container_start_page 24
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Payne, Jonathan L
Boyer, Alison G
Brown, James H
Finnegan, Seth
Kowalewski, Michał
Krause, Richard A. Jr
Lyons, S. Kathleen
McClain, Craig R
McShea, Daniel W
Novack-Gottshall, Philip M
Smith, Felisa A
Stempien, Jennifer A
Wang, Steve C
description The maximum size of organisms has increased enormously since the initial appearance of life >3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our period-level compilation of the largest known fossil organisms demonstrates that maximum size increased by 16 orders of magnitude since life first appeared in the fossil record. The great majority of the increase is accounted for by 2 discrete steps of approximately equal magnitude: the first in the middle of the Paleoproterozoic Era ([almost equal to]1.9 Gya) and the second during the late Neoproterozoic and early Paleozoic eras (0.6-0.45 Gya). Each size step required a major innovation in organismal complexity--first the eukaryotic cell and later eukaryotic multicellularity. These size steps coincide with, or slightly postdate, increases in the concentration of atmospheric oxygen, suggesting latent evolutionary potential was realized soon after environmental limitations were removed.
doi_str_mv 10.1073/pnas.0806314106
format article
fullrecord <record><control><sourceid>jstor_fao_a</sourceid><recordid>TN_cdi_jstor_primary_40272310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40272310</jstor_id><sourcerecordid>40272310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEokvhzIUPX-CW7dhxnORSCVV8SZU40J4tJzvedeXYwXaWLkd-OV7tqgsXTmPN-8w7Y4-L4iWFJYWmupiciktoQVSUUxCPigWFjpaCd_C4WACwpmw542fFsxjvAKCrW3hanNEuw6wTi-L3zU9fThsVkRg3BDwcSNogGdW9GeeRRPMLidfEGp3jFgOpljXpjbXGO7JDFSIJqC0OKea0t35tBmWzjfNblfaQciuCbmuCdyO6lEU_TT6k2Zm0e1480cpGfHGM58Xtp483V1_K62-fv159uC5V3TSp1LruBUPoVT9wpXmPLOdb1bOqozWjFRe677Bt6YADVQ1rRSNqJgTv21XDV9V5cXnwneZ-xNWQBwnKyimYUYWd9MrIfxVnNnLtt5IJaBgX2eD90SD4HzPGJEcTB7RWOfRzlEK0kPuxDF4cwCH4GPPbPDShIPd7k_u9ydPecsWbv2c78cdFZeDVEdhXnuyEpJLxLL_7jyz1bG3C-5S51wfuLiYfHkCePwqrKGT97UHXyku1DibK2-8MaAW0bjqe7_YHczTBWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66802662</pqid></control><display><type>article</type><title>Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Payne, Jonathan L ; Boyer, Alison G ; Brown, James H ; Finnegan, Seth ; Kowalewski, Michał ; Krause, Richard A. Jr ; Lyons, S. Kathleen ; McClain, Craig R ; McShea, Daniel W ; Novack-Gottshall, Philip M ; Smith, Felisa A ; Stempien, Jennifer A ; Wang, Steve C</creator><creatorcontrib>Payne, Jonathan L ; Boyer, Alison G ; Brown, James H ; Finnegan, Seth ; Kowalewski, Michał ; Krause, Richard A. Jr ; Lyons, S. Kathleen ; McClain, Craig R ; McShea, Daniel W ; Novack-Gottshall, Philip M ; Smith, Felisa A ; Stempien, Jennifer A ; Wang, Steve C</creatorcontrib><description>The maximum size of organisms has increased enormously since the initial appearance of life &gt;3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our period-level compilation of the largest known fossil organisms demonstrates that maximum size increased by 16 orders of magnitude since life first appeared in the fossil record. The great majority of the increase is accounted for by 2 discrete steps of approximately equal magnitude: the first in the middle of the Paleoproterozoic Era ([almost equal to]1.9 Gya) and the second during the late Neoproterozoic and early Paleozoic eras (0.6-0.45 Gya). Each size step required a major innovation in organismal complexity--first the eukaryotic cell and later eukaryotic multicellularity. These size steps coincide with, or slightly postdate, increases in the concentration of atmospheric oxygen, suggesting latent evolutionary potential was realized soon after environmental limitations were removed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0806314106</identifier><identifier>PMID: 19106296</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Atmosphere ; Atmospherics ; Biological Evolution ; Biological Sciences ; Body size ; Body Size - genetics ; Environment ; Eukaryotic Cells ; Evolution ; Fossils ; Geology ; History, Ancient ; Oxygen ; Paleobiology ; Physical Sciences ; Precambrian strata</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-01, Vol.106 (1), p.24-27</ispartof><rights>2008 by The National Academy of Sciences of the USA 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3</citedby><cites>FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40272310$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40272310$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19106296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Payne, Jonathan L</creatorcontrib><creatorcontrib>Boyer, Alison G</creatorcontrib><creatorcontrib>Brown, James H</creatorcontrib><creatorcontrib>Finnegan, Seth</creatorcontrib><creatorcontrib>Kowalewski, Michał</creatorcontrib><creatorcontrib>Krause, Richard A. Jr</creatorcontrib><creatorcontrib>Lyons, S. Kathleen</creatorcontrib><creatorcontrib>McClain, Craig R</creatorcontrib><creatorcontrib>McShea, Daniel W</creatorcontrib><creatorcontrib>Novack-Gottshall, Philip M</creatorcontrib><creatorcontrib>Smith, Felisa A</creatorcontrib><creatorcontrib>Stempien, Jennifer A</creatorcontrib><creatorcontrib>Wang, Steve C</creatorcontrib><title>Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The maximum size of organisms has increased enormously since the initial appearance of life &gt;3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our period-level compilation of the largest known fossil organisms demonstrates that maximum size increased by 16 orders of magnitude since life first appeared in the fossil record. The great majority of the increase is accounted for by 2 discrete steps of approximately equal magnitude: the first in the middle of the Paleoproterozoic Era ([almost equal to]1.9 Gya) and the second during the late Neoproterozoic and early Paleozoic eras (0.6-0.45 Gya). Each size step required a major innovation in organismal complexity--first the eukaryotic cell and later eukaryotic multicellularity. These size steps coincide with, or slightly postdate, increases in the concentration of atmospheric oxygen, suggesting latent evolutionary potential was realized soon after environmental limitations were removed.</description><subject>Animals</subject><subject>Atmosphere</subject><subject>Atmospherics</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Body size</subject><subject>Body Size - genetics</subject><subject>Environment</subject><subject>Eukaryotic Cells</subject><subject>Evolution</subject><subject>Fossils</subject><subject>Geology</subject><subject>History, Ancient</subject><subject>Oxygen</subject><subject>Paleobiology</subject><subject>Physical Sciences</subject><subject>Precambrian strata</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhiMEokvhzIUPX-CW7dhxnORSCVV8SZU40J4tJzvedeXYwXaWLkd-OV7tqgsXTmPN-8w7Y4-L4iWFJYWmupiciktoQVSUUxCPigWFjpaCd_C4WACwpmw542fFsxjvAKCrW3hanNEuw6wTi-L3zU9fThsVkRg3BDwcSNogGdW9GeeRRPMLidfEGp3jFgOpljXpjbXGO7JDFSIJqC0OKea0t35tBmWzjfNblfaQciuCbmuCdyO6lEU_TT6k2Zm0e1480cpGfHGM58Xtp483V1_K62-fv159uC5V3TSp1LruBUPoVT9wpXmPLOdb1bOqozWjFRe677Bt6YADVQ1rRSNqJgTv21XDV9V5cXnwneZ-xNWQBwnKyimYUYWd9MrIfxVnNnLtt5IJaBgX2eD90SD4HzPGJEcTB7RWOfRzlEK0kPuxDF4cwCH4GPPbPDShIPd7k_u9ydPecsWbv2c78cdFZeDVEdhXnuyEpJLxLL_7jyz1bG3C-5S51wfuLiYfHkCePwqrKGT97UHXyku1DibK2-8MaAW0bjqe7_YHczTBWA</recordid><startdate>20090106</startdate><enddate>20090106</enddate><creator>Payne, Jonathan L</creator><creator>Boyer, Alison G</creator><creator>Brown, James H</creator><creator>Finnegan, Seth</creator><creator>Kowalewski, Michał</creator><creator>Krause, Richard A. Jr</creator><creator>Lyons, S. Kathleen</creator><creator>McClain, Craig R</creator><creator>McShea, Daniel W</creator><creator>Novack-Gottshall, Philip M</creator><creator>Smith, Felisa A</creator><creator>Stempien, Jennifer A</creator><creator>Wang, Steve C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090106</creationdate><title>Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity</title><author>Payne, Jonathan L ; Boyer, Alison G ; Brown, James H ; Finnegan, Seth ; Kowalewski, Michał ; Krause, Richard A. Jr ; Lyons, S. Kathleen ; McClain, Craig R ; McShea, Daniel W ; Novack-Gottshall, Philip M ; Smith, Felisa A ; Stempien, Jennifer A ; Wang, Steve C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Atmosphere</topic><topic>Atmospherics</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Body size</topic><topic>Body Size - genetics</topic><topic>Environment</topic><topic>Eukaryotic Cells</topic><topic>Evolution</topic><topic>Fossils</topic><topic>Geology</topic><topic>History, Ancient</topic><topic>Oxygen</topic><topic>Paleobiology</topic><topic>Physical Sciences</topic><topic>Precambrian strata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Payne, Jonathan L</creatorcontrib><creatorcontrib>Boyer, Alison G</creatorcontrib><creatorcontrib>Brown, James H</creatorcontrib><creatorcontrib>Finnegan, Seth</creatorcontrib><creatorcontrib>Kowalewski, Michał</creatorcontrib><creatorcontrib>Krause, Richard A. Jr</creatorcontrib><creatorcontrib>Lyons, S. Kathleen</creatorcontrib><creatorcontrib>McClain, Craig R</creatorcontrib><creatorcontrib>McShea, Daniel W</creatorcontrib><creatorcontrib>Novack-Gottshall, Philip M</creatorcontrib><creatorcontrib>Smith, Felisa A</creatorcontrib><creatorcontrib>Stempien, Jennifer A</creatorcontrib><creatorcontrib>Wang, Steve C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Payne, Jonathan L</au><au>Boyer, Alison G</au><au>Brown, James H</au><au>Finnegan, Seth</au><au>Kowalewski, Michał</au><au>Krause, Richard A. Jr</au><au>Lyons, S. Kathleen</au><au>McClain, Craig R</au><au>McShea, Daniel W</au><au>Novack-Gottshall, Philip M</au><au>Smith, Felisa A</au><au>Stempien, Jennifer A</au><au>Wang, Steve C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-01-06</date><risdate>2009</risdate><volume>106</volume><issue>1</issue><spage>24</spage><epage>27</epage><pages>24-27</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The maximum size of organisms has increased enormously since the initial appearance of life &gt;3.5 billion years ago (Gya), but the pattern and timing of this size increase is poorly known. Consequently, controls underlying the size spectrum of the global biota have been difficult to evaluate. Our period-level compilation of the largest known fossil organisms demonstrates that maximum size increased by 16 orders of magnitude since life first appeared in the fossil record. The great majority of the increase is accounted for by 2 discrete steps of approximately equal magnitude: the first in the middle of the Paleoproterozoic Era ([almost equal to]1.9 Gya) and the second during the late Neoproterozoic and early Paleozoic eras (0.6-0.45 Gya). Each size step required a major innovation in organismal complexity--first the eukaryotic cell and later eukaryotic multicellularity. These size steps coincide with, or slightly postdate, increases in the concentration of atmospheric oxygen, suggesting latent evolutionary potential was realized soon after environmental limitations were removed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19106296</pmid><doi>10.1073/pnas.0806314106</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-01, Vol.106 (1), p.24-27
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_40272310
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects Animals
Atmosphere
Atmospherics
Biological Evolution
Biological Sciences
Body size
Body Size - genetics
Environment
Eukaryotic Cells
Evolution
Fossils
Geology
History, Ancient
Oxygen
Paleobiology
Physical Sciences
Precambrian strata
title Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-phase%20increase%20in%20the%20maximum%20size%20of%20life%20over%203.5%20billion%20years%20reflects%20biological%20innovation%20and%20environmental%20opportunity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Payne,%20Jonathan%20L&rft.date=2009-01-06&rft.volume=106&rft.issue=1&rft.spage=24&rft.epage=27&rft.pages=24-27&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0806314106&rft_dat=%3Cjstor_fao_a%3E40272310%3C/jstor_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a577t-ff5b62e0babc4af4be25778ab2391521346fb9e881cec1a72867652664b8d74d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66802662&rft_id=info:pmid/19106296&rft_jstor_id=40272310&rfr_iscdi=true