Loading…
CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53
p300 and CREB-binding protein (CBP) act as multifunctional regulators of p53 via acetylase and polyubiquitin ligase (E4) activities. Prior work in vitro has shown that the N-terminal 595 aa of p300 encode both generic ubiquitin ligase (E3) and p53-directed E4 functions. Analysis of p300 or CBP-defic...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2009-09, Vol.106 (38), p.16275-16280 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | p300 and CREB-binding protein (CBP) act as multifunctional regulators of p53 via acetylase and polyubiquitin ligase (E4) activities. Prior work in vitro has shown that the N-terminal 595 aa of p300 encode both generic ubiquitin ligase (E3) and p53-directed E4 functions. Analysis of p300 or CBP-deficient cells revealed that both coactivators were required for endogenous p53 polyubiquitination and the normally rapid turnover of p53 in unstressed cells. Unexpectedly, p300/CBP ubiquitin ligase activities were absent in nuclear extracts and exclusively cytoplasmic. Consistent with the cytoplasmic localization of its E3/E4 activity, CBP deficiency specifically stabilized cytoplasmic, but not nuclear p53. The N-terminal 616 aa of CBP, which includes the conserved Zn²⁺-binding C/H1-TAZ1 domain, was the minimal domain sufficient to destabilize p53 in vivo, and it included within an intrinsic E3 autoubiquitination activity and, in a two-step E4 assay, exhibited robust E4 activity for p53. Cytoplasmic compartmentalization of p300/CBP's ubiquitination function reconciles seemingly opposed functions and explains how a futile cycle is avoided--cytoplasmic p300/CBP E4 activities ubiquitinate and destabilize p53, while physically separate nuclear p300/CBP activities, such as p53 acetylation, activate p53. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0904305106 |