Loading…
A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k
We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, w...
Saved in:
Published in: | Mathematics of computation 2003-10, Vol.72 (244), p.2099-2110 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2110 |
container_issue | 244 |
container_start_page | 2099 |
container_title | Mathematics of computation |
container_volume | 72 |
creator | M. J. Jacobson, Jr Pintér, Á. Walsh, P. G. |
description | We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we determine all integral solutions for$2 \leq k \leq 70$assuming the Generalized Riemann Hypothesis, and for$2 \leq k \leq 58$unconditionally. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_4100041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4100041</jstor_id><sourcerecordid>4100041</sourcerecordid><originalsourceid>FETCH-jstor_primary_41000413</originalsourceid><addsrcrecordid>eNpjYuA0NLCw0DWzMDFiYeA0MDAy1TU1N7TgYOAqLs4yMDAwNDM152QIcVRwzs8tKC1JLMnMz0vMUXAsKCjKT0zOUEjLL1IIzs8py8xLV6mMqzaqVbBVMIyrzq5V0FYwgtIxySn5JSiktkJFXDYPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLyjKzE0sqow3MQQ6w8TQmIA0AOsSOmA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications</source><creator>M. J. Jacobson, Jr ; Pintér, Á. ; Walsh, P. G.</creator><creatorcontrib>M. J. Jacobson, Jr ; Pintér, Á. ; Walsh, P. G.</creatorcontrib><description>We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we determine all integral solutions for$2 \leq k \leq 70$assuming the Generalized Riemann Hypothesis, and for$2 \leq k \leq 58$unconditionally.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Algorithms ; Curves ; Decimals ; Diophantine equation ; Integers ; Mathematical tables ; Mathematical theorems ; Polynomials ; Trivial solutions</subject><ispartof>Mathematics of computation, 2003-10, Vol.72 (244), p.2099-2110</ispartof><rights>Copyright 2003 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4100041$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4100041$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>M. J. Jacobson, Jr</creatorcontrib><creatorcontrib>Pintér, Á.</creatorcontrib><creatorcontrib>Walsh, P. G.</creatorcontrib><title>A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k</title><title>Mathematics of computation</title><description>We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we determine all integral solutions for$2 \leq k \leq 70$assuming the Generalized Riemann Hypothesis, and for$2 \leq k \leq 58$unconditionally.</description><subject>Algorithms</subject><subject>Curves</subject><subject>Decimals</subject><subject>Diophantine equation</subject><subject>Integers</subject><subject>Mathematical tables</subject><subject>Mathematical theorems</subject><subject>Polynomials</subject><subject>Trivial solutions</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLCw0DWzMDFiYeA0MDAy1TU1N7TgYOAqLs4yMDAwNDM152QIcVRwzs8tKC1JLMnMz0vMUXAsKCjKT0zOUEjLL1IIzs8py8xLV6mMqzaqVbBVMIyrzq5V0FYwgtIxySn5JSiktkJFXDYPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLyjKzE0sqow3MQQ6w8TQmIA0AOsSOmA</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>M. J. Jacobson, Jr</creator><creator>Pintér, Á.</creator><creator>Walsh, P. G.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20031001</creationdate><title>A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k</title><author>M. J. Jacobson, Jr ; Pintér, Á. ; Walsh, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_41000413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Curves</topic><topic>Decimals</topic><topic>Diophantine equation</topic><topic>Integers</topic><topic>Mathematical tables</topic><topic>Mathematical theorems</topic><topic>Polynomials</topic><topic>Trivial solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M. J. Jacobson, Jr</creatorcontrib><creatorcontrib>Pintér, Á.</creatorcontrib><creatorcontrib>Walsh, P. G.</creatorcontrib><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M. J. Jacobson, Jr</au><au>Pintér, Á.</au><au>Walsh, P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k</atitle><jtitle>Mathematics of computation</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>72</volume><issue>244</issue><spage>2099</spage><epage>2110</epage><pages>2099-2110</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we determine all integral solutions for$2 \leq k \leq 70$assuming the Generalized Riemann Hypothesis, and for$2 \leq k \leq 58$unconditionally.</abstract><pub>American Mathematical Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2003-10, Vol.72 (244), p.2099-2110 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_jstor_primary_4100041 |
source | JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications |
subjects | Algorithms Curves Decimals Diophantine equation Integers Mathematical tables Mathematical theorems Polynomials Trivial solutions |
title | A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Approach%20for%20Solving$y%5E%7B2%7D%20=%201%5E%7Bk%7D%20+%202%5E%7Bk%7D%20+%20%5Ccdot%20%5Ccdot%20%5Ccdot%20+%20x%5Ek&rft.jtitle=Mathematics%20of%20computation&rft.au=M.%20J.%20Jacobson,%20Jr&rft.date=2003-10-01&rft.volume=72&rft.issue=244&rft.spage=2099&rft.epage=2110&rft.pages=2099-2110&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/&rft_dat=%3Cjstor%3E4100041%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_41000413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4100041&rfr_iscdi=true |