Loading…

A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k

We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, w...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics of computation 2003-10, Vol.72 (244), p.2099-2110
Main Authors: M. J. Jacobson, Jr, Pintér, Á., Walsh, P. G.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2110
container_issue 244
container_start_page 2099
container_title Mathematics of computation
container_volume 72
creator M. J. Jacobson, Jr
Pintér, Á.
Walsh, P. G.
description We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we determine all integral solutions for$2 \leq k \leq 70$assuming the Generalized Riemann Hypothesis, and for$2 \leq k \leq 58$unconditionally.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_4100041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4100041</jstor_id><sourcerecordid>4100041</sourcerecordid><originalsourceid>FETCH-jstor_primary_41000413</originalsourceid><addsrcrecordid>eNpjYuA0NLCw0DWzMDFiYeA0MDAy1TU1N7TgYOAqLs4yMDAwNDM152QIcVRwzs8tKC1JLMnMz0vMUXAsKCjKT0zOUEjLL1IIzs8py8xLV6mMqzaqVbBVMIyrzq5V0FYwgtIxySn5JSiktkJFXDYPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLyjKzE0sqow3MQQ6w8TQmIA0AOsSOmA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications</source><creator>M. J. Jacobson, Jr ; Pintér, Á. ; Walsh, P. G.</creator><creatorcontrib>M. J. Jacobson, Jr ; Pintér, Á. ; Walsh, P. G.</creatorcontrib><description>We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we determine all integral solutions for$2 \leq k \leq 70$assuming the Generalized Riemann Hypothesis, and for$2 \leq k \leq 58$unconditionally.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Algorithms ; Curves ; Decimals ; Diophantine equation ; Integers ; Mathematical tables ; Mathematical theorems ; Polynomials ; Trivial solutions</subject><ispartof>Mathematics of computation, 2003-10, Vol.72 (244), p.2099-2110</ispartof><rights>Copyright 2003 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4100041$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4100041$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>M. J. Jacobson, Jr</creatorcontrib><creatorcontrib>Pintér, Á.</creatorcontrib><creatorcontrib>Walsh, P. G.</creatorcontrib><title>A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k</title><title>Mathematics of computation</title><description>We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we determine all integral solutions for$2 \leq k \leq 70$assuming the Generalized Riemann Hypothesis, and for$2 \leq k \leq 58$unconditionally.</description><subject>Algorithms</subject><subject>Curves</subject><subject>Decimals</subject><subject>Diophantine equation</subject><subject>Integers</subject><subject>Mathematical tables</subject><subject>Mathematical theorems</subject><subject>Polynomials</subject><subject>Trivial solutions</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NLCw0DWzMDFiYeA0MDAy1TU1N7TgYOAqLs4yMDAwNDM152QIcVRwzs8tKC1JLMnMz0vMUXAsKCjKT0zOUEjLL1IIzs8py8xLV6mMqzaqVbBVMIyrzq5V0FYwgtIxySn5JSiktkJFXDYPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLyjKzE0sqow3MQQ6w8TQmIA0AOsSOmA</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>M. J. Jacobson, Jr</creator><creator>Pintér, Á.</creator><creator>Walsh, P. G.</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20031001</creationdate><title>A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k</title><author>M. J. Jacobson, Jr ; Pintér, Á. ; Walsh, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_41000413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Curves</topic><topic>Decimals</topic><topic>Diophantine equation</topic><topic>Integers</topic><topic>Mathematical tables</topic><topic>Mathematical theorems</topic><topic>Polynomials</topic><topic>Trivial solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M. J. Jacobson, Jr</creatorcontrib><creatorcontrib>Pintér, Á.</creatorcontrib><creatorcontrib>Walsh, P. G.</creatorcontrib><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M. J. Jacobson, Jr</au><au>Pintér, Á.</au><au>Walsh, P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k</atitle><jtitle>Mathematics of computation</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>72</volume><issue>244</issue><spage>2099</spage><epage>2110</epage><pages>2099-2110</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>We present a computational approach for finding all integral solutions of the equation$y^{2} = 1^{k} + 2^{k} + \cdot\cdot\cdot + x^{k}$for even values of k. By reducing this problem to that of finding integral solutions of a certain class of quartic equations closely related to the Pell equations, we are able to apply the powerful computational machinery related to quadratic number fields. Using our approach, we determine all integral solutions for$2 \leq k \leq 70$assuming the Generalized Riemann Hypothesis, and for$2 \leq k \leq 58$unconditionally.</abstract><pub>American Mathematical Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2003-10, Vol.72 (244), p.2099-2110
issn 0025-5718
1088-6842
language eng
recordid cdi_jstor_primary_4100041
source JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications
subjects Algorithms
Curves
Decimals
Diophantine equation
Integers
Mathematical tables
Mathematical theorems
Polynomials
Trivial solutions
title A Computational Approach for Solving$y^{2} = 1^{k} + 2^{k} + \cdot \cdot \cdot + x^k
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Approach%20for%20Solving$y%5E%7B2%7D%20=%201%5E%7Bk%7D%20+%202%5E%7Bk%7D%20+%20%5Ccdot%20%5Ccdot%20%5Ccdot%20+%20x%5Ek&rft.jtitle=Mathematics%20of%20computation&rft.au=M.%20J.%20Jacobson,%20Jr&rft.date=2003-10-01&rft.volume=72&rft.issue=244&rft.spage=2099&rft.epage=2110&rft.pages=2099-2110&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/&rft_dat=%3Cjstor%3E4100041%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_41000413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4100041&rfr_iscdi=true