Loading…
A Positive Feedback Loop of Phosphodiesterase 3 (PDE3) and Inducible cAMP Early Repressor (ICER) Leads to Cardiomyocyte Apoptosis
cAMP plays crucial roles in cardiac remodeling and the progression of heart failure. Recently, we found that expression of cAMP hydrolyzing phosphodiesterase 3A (PDE3A) was significantly reduced in human failing hearts, accompanied by up-regulation of inducible cAMP early repressor (ICER) expression...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2005-10, Vol.102 (41), p.14771-14776 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c595t-7c6e0134d6907806229e7e5800947a41076ba7f06289ab9677307ba0591bf0f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c595t-7c6e0134d6907806229e7e5800947a41076ba7f06289ab9677307ba0591bf0f23 |
container_end_page | 14776 |
container_issue | 41 |
container_start_page | 14771 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Ding, Bo Jun-ichi Abe Heng Wei Haodong Xu Wenyi Che Aizawa, Toru Liu, Weimin Molina, Carlos A. Sadoshima, Junichi Burns C. Blaxall Berk, Bradford C. Yan, Chen |
description | cAMP plays crucial roles in cardiac remodeling and the progression of heart failure. Recently, we found that expression of cAMP hydrolyzing phosphodiesterase 3A (PDE3A) was significantly reduced in human failing hearts, accompanied by up-regulation of inducible cAMP early repressor (ICER) expression. Angiotensin II (Ang II) and the β-adrenergic receptor agonist isoproterenol (ISO) also induced persistent PDE3A down-regulation and concomitant ICER up-regulation in vitro, which is important in Ang II- and ISO-induced cardiomyocyte apoptosis. We hypothesized that interactions between PDE3A and ICER may constitute an autoregulatory positive feedback loop (PDE3A-ICER feedback loop), and this loop would cause persistent PDE3A down-regulation and ICER up-regulation. Here, we demonstrate that ICER induction repressed PDE3A gene transcription. PDE3A down-regulation activated cAMP/PKA signaling, leading to ICER up-regulation via PKA-dependent stabilization of ICER. With respect to Ang II, the initiation of the PDE3A-ICER feedback loop depends on activation of Ang II type 1 receptor (AT1R), classical PKC(s), and CREB (cAMP response element binding protein). We further show that the PDE3A-ICER feedback loop is essential for Ang II-induced cardiomyocyte apoptosis. ISO and PDE3 inhibitors also induced the PDE3A-ICER feedback loop and subsequent cardiomyocyte apoptosis, highlighting the importance of this PDE3A-ICER feedback loop and cAMP signaling in cardiomyocyte apoptosis. Our findings may provide a therapeutic paradigm to prevent cardiomyocyte apoptosis and the progression of heart failure by inhibiting the PDE3A-ICER feedback loop. |
doi_str_mv | 10.1073/pnas.0506489102 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_4143392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4143392</jstor_id><sourcerecordid>4143392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-7c6e0134d6907806229e7e5800947a41076ba7f06289ab9677307ba0591bf0f23</originalsourceid><addsrcrecordid>eNqFks1v00AQxS0EoqFw5oLQigNqDm5nP-z1XpCiNIVIQUQVnFdre0wcHK-7a1fNkf-ctRI1wKWnPcxv3sx7O1H0lsIlBcmvutb4S0ggFZmiwJ5FEwqKxqlQ8DyaADAZZ4KJs-iV91sAUEkGL6MzmtJsbJlEv2dkbX3d1_dIbhDL3BS_yMrajtiKrDfWdxtb1uh7dMYj4eRifb3gU2LakizbcijqvEFSzL6uycK4Zk9usXPovXXkYjlf3E7JCk3pSW_J3Liytru9LfY9kllnuz5M9q-jF5VpPL45vufRj5vF9_mXePXt83I-W8VFopI-lkWKQLkoUwUyg5QxhRKDHVBCGhHSSHMjq1DIlMlVKiUHmRtIFM0rqBg_jz4ddLsh32FZYNs70-jO1Tvj9tqaWv9baeuN_mnvNWUJT2QSBD4eBZy9G0Ikelf7ApvGtGgHr9MsDFUAT4JUpUpmbAQ__Adu7eDakIJmwWuS0Wzc--oAFc5677B6XJmCHo9Aj0egT0cQOt7_7fTEH389AOQIjJ0nOaYF1VRISQMyfQLR1dA0PT70gX13YLe-t-4RFlRwrhj_A_Y7zVE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201358182</pqid></control><display><type>article</type><title>A Positive Feedback Loop of Phosphodiesterase 3 (PDE3) and Inducible cAMP Early Repressor (ICER) Leads to Cardiomyocyte Apoptosis</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Ding, Bo ; Jun-ichi Abe ; Heng Wei ; Haodong Xu ; Wenyi Che ; Aizawa, Toru ; Liu, Weimin ; Molina, Carlos A. ; Sadoshima, Junichi ; Burns C. Blaxall ; Berk, Bradford C. ; Yan, Chen</creator><creatorcontrib>Ding, Bo ; Jun-ichi Abe ; Heng Wei ; Haodong Xu ; Wenyi Che ; Aizawa, Toru ; Liu, Weimin ; Molina, Carlos A. ; Sadoshima, Junichi ; Burns C. Blaxall ; Berk, Bradford C. ; Yan, Chen</creatorcontrib><description>cAMP plays crucial roles in cardiac remodeling and the progression of heart failure. Recently, we found that expression of cAMP hydrolyzing phosphodiesterase 3A (PDE3A) was significantly reduced in human failing hearts, accompanied by up-regulation of inducible cAMP early repressor (ICER) expression. Angiotensin II (Ang II) and the β-adrenergic receptor agonist isoproterenol (ISO) also induced persistent PDE3A down-regulation and concomitant ICER up-regulation in vitro, which is important in Ang II- and ISO-induced cardiomyocyte apoptosis. We hypothesized that interactions between PDE3A and ICER may constitute an autoregulatory positive feedback loop (PDE3A-ICER feedback loop), and this loop would cause persistent PDE3A down-regulation and ICER up-regulation. Here, we demonstrate that ICER induction repressed PDE3A gene transcription. PDE3A down-regulation activated cAMP/PKA signaling, leading to ICER up-regulation via PKA-dependent stabilization of ICER. With respect to Ang II, the initiation of the PDE3A-ICER feedback loop depends on activation of Ang II type 1 receptor (AT1R), classical PKC(s), and CREB (cAMP response element binding protein). We further show that the PDE3A-ICER feedback loop is essential for Ang II-induced cardiomyocyte apoptosis. ISO and PDE3 inhibitors also induced the PDE3A-ICER feedback loop and subsequent cardiomyocyte apoptosis, highlighting the importance of this PDE3A-ICER feedback loop and cAMP signaling in cardiomyocyte apoptosis. Our findings may provide a therapeutic paradigm to prevent cardiomyocyte apoptosis and the progression of heart failure by inhibiting the PDE3A-ICER feedback loop.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0506489102</identifier><identifier>PMID: 16186489</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>3',5'-Cyclic-AMP Phosphodiesterases - metabolism ; Animals ; Apoptosis ; Apoptosis - physiology ; Biological Sciences ; Blood Pressure ; Conserved Sequence - genetics ; Control loops ; Cyclic AMP Response Element Modulator - metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 3 ; Down regulation ; Enzymes ; Feedback, Physiological - physiology ; Gene Expression Regulation ; Genes ; Genomics ; Heart ; Heart failure ; Heart Rate ; Luciferases ; Myocardium ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; Positive feedback ; Promoter regions ; Promoter Regions, Genetic - genetics ; Rats ; Rats, Sprague-Dawley ; Signal Transduction - physiology ; Up regulation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-10, Vol.102 (41), p.14771-14776</ispartof><rights>Copyright 2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 11, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-7c6e0134d6907806229e7e5800947a41076ba7f06289ab9677307ba0591bf0f23</citedby><cites>FETCH-LOGICAL-c595t-7c6e0134d6907806229e7e5800947a41076ba7f06289ab9677307ba0591bf0f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4143392$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4143392$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16186489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Bo</creatorcontrib><creatorcontrib>Jun-ichi Abe</creatorcontrib><creatorcontrib>Heng Wei</creatorcontrib><creatorcontrib>Haodong Xu</creatorcontrib><creatorcontrib>Wenyi Che</creatorcontrib><creatorcontrib>Aizawa, Toru</creatorcontrib><creatorcontrib>Liu, Weimin</creatorcontrib><creatorcontrib>Molina, Carlos A.</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Burns C. Blaxall</creatorcontrib><creatorcontrib>Berk, Bradford C.</creatorcontrib><creatorcontrib>Yan, Chen</creatorcontrib><title>A Positive Feedback Loop of Phosphodiesterase 3 (PDE3) and Inducible cAMP Early Repressor (ICER) Leads to Cardiomyocyte Apoptosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>cAMP plays crucial roles in cardiac remodeling and the progression of heart failure. Recently, we found that expression of cAMP hydrolyzing phosphodiesterase 3A (PDE3A) was significantly reduced in human failing hearts, accompanied by up-regulation of inducible cAMP early repressor (ICER) expression. Angiotensin II (Ang II) and the β-adrenergic receptor agonist isoproterenol (ISO) also induced persistent PDE3A down-regulation and concomitant ICER up-regulation in vitro, which is important in Ang II- and ISO-induced cardiomyocyte apoptosis. We hypothesized that interactions between PDE3A and ICER may constitute an autoregulatory positive feedback loop (PDE3A-ICER feedback loop), and this loop would cause persistent PDE3A down-regulation and ICER up-regulation. Here, we demonstrate that ICER induction repressed PDE3A gene transcription. PDE3A down-regulation activated cAMP/PKA signaling, leading to ICER up-regulation via PKA-dependent stabilization of ICER. With respect to Ang II, the initiation of the PDE3A-ICER feedback loop depends on activation of Ang II type 1 receptor (AT1R), classical PKC(s), and CREB (cAMP response element binding protein). We further show that the PDE3A-ICER feedback loop is essential for Ang II-induced cardiomyocyte apoptosis. ISO and PDE3 inhibitors also induced the PDE3A-ICER feedback loop and subsequent cardiomyocyte apoptosis, highlighting the importance of this PDE3A-ICER feedback loop and cAMP signaling in cardiomyocyte apoptosis. Our findings may provide a therapeutic paradigm to prevent cardiomyocyte apoptosis and the progression of heart failure by inhibiting the PDE3A-ICER feedback loop.</description><subject>3',5'-Cyclic-AMP Phosphodiesterases - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Biological Sciences</subject><subject>Blood Pressure</subject><subject>Conserved Sequence - genetics</subject><subject>Control loops</subject><subject>Cyclic AMP Response Element Modulator - metabolism</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 3</subject><subject>Down regulation</subject><subject>Enzymes</subject><subject>Feedback, Physiological - physiology</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genomics</subject><subject>Heart</subject><subject>Heart failure</subject><subject>Heart Rate</subject><subject>Luciferases</subject><subject>Myocardium</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Positive feedback</subject><subject>Promoter regions</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction - physiology</subject><subject>Up regulation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFks1v00AQxS0EoqFw5oLQigNqDm5nP-z1XpCiNIVIQUQVnFdre0wcHK-7a1fNkf-ctRI1wKWnPcxv3sx7O1H0lsIlBcmvutb4S0ggFZmiwJ5FEwqKxqlQ8DyaADAZZ4KJs-iV91sAUEkGL6MzmtJsbJlEv2dkbX3d1_dIbhDL3BS_yMrajtiKrDfWdxtb1uh7dMYj4eRifb3gU2LakizbcijqvEFSzL6uycK4Zk9usXPovXXkYjlf3E7JCk3pSW_J3Liytru9LfY9kllnuz5M9q-jF5VpPL45vufRj5vF9_mXePXt83I-W8VFopI-lkWKQLkoUwUyg5QxhRKDHVBCGhHSSHMjq1DIlMlVKiUHmRtIFM0rqBg_jz4ddLsh32FZYNs70-jO1Tvj9tqaWv9baeuN_mnvNWUJT2QSBD4eBZy9G0Ikelf7ApvGtGgHr9MsDFUAT4JUpUpmbAQ__Adu7eDakIJmwWuS0Wzc--oAFc5677B6XJmCHo9Aj0egT0cQOt7_7fTEH389AOQIjJ0nOaYF1VRISQMyfQLR1dA0PT70gX13YLe-t-4RFlRwrhj_A_Y7zVE</recordid><startdate>20051011</startdate><enddate>20051011</enddate><creator>Ding, Bo</creator><creator>Jun-ichi Abe</creator><creator>Heng Wei</creator><creator>Haodong Xu</creator><creator>Wenyi Che</creator><creator>Aizawa, Toru</creator><creator>Liu, Weimin</creator><creator>Molina, Carlos A.</creator><creator>Sadoshima, Junichi</creator><creator>Burns C. Blaxall</creator><creator>Berk, Bradford C.</creator><creator>Yan, Chen</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051011</creationdate><title>A Positive Feedback Loop of Phosphodiesterase 3 (PDE3) and Inducible cAMP Early Repressor (ICER) Leads to Cardiomyocyte Apoptosis</title><author>Ding, Bo ; Jun-ichi Abe ; Heng Wei ; Haodong Xu ; Wenyi Che ; Aizawa, Toru ; Liu, Weimin ; Molina, Carlos A. ; Sadoshima, Junichi ; Burns C. Blaxall ; Berk, Bradford C. ; Yan, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-7c6e0134d6907806229e7e5800947a41076ba7f06289ab9677307ba0591bf0f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>3',5'-Cyclic-AMP Phosphodiesterases - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Biological Sciences</topic><topic>Blood Pressure</topic><topic>Conserved Sequence - genetics</topic><topic>Control loops</topic><topic>Cyclic AMP Response Element Modulator - metabolism</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 3</topic><topic>Down regulation</topic><topic>Enzymes</topic><topic>Feedback, Physiological - physiology</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genomics</topic><topic>Heart</topic><topic>Heart failure</topic><topic>Heart Rate</topic><topic>Luciferases</topic><topic>Myocardium</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Positive feedback</topic><topic>Promoter regions</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction - physiology</topic><topic>Up regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Bo</creatorcontrib><creatorcontrib>Jun-ichi Abe</creatorcontrib><creatorcontrib>Heng Wei</creatorcontrib><creatorcontrib>Haodong Xu</creatorcontrib><creatorcontrib>Wenyi Che</creatorcontrib><creatorcontrib>Aizawa, Toru</creatorcontrib><creatorcontrib>Liu, Weimin</creatorcontrib><creatorcontrib>Molina, Carlos A.</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Burns C. Blaxall</creatorcontrib><creatorcontrib>Berk, Bradford C.</creatorcontrib><creatorcontrib>Yan, Chen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Bo</au><au>Jun-ichi Abe</au><au>Heng Wei</au><au>Haodong Xu</au><au>Wenyi Che</au><au>Aizawa, Toru</au><au>Liu, Weimin</au><au>Molina, Carlos A.</au><au>Sadoshima, Junichi</au><au>Burns C. Blaxall</au><au>Berk, Bradford C.</au><au>Yan, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Positive Feedback Loop of Phosphodiesterase 3 (PDE3) and Inducible cAMP Early Repressor (ICER) Leads to Cardiomyocyte Apoptosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-10-11</date><risdate>2005</risdate><volume>102</volume><issue>41</issue><spage>14771</spage><epage>14776</epage><pages>14771-14776</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>cAMP plays crucial roles in cardiac remodeling and the progression of heart failure. Recently, we found that expression of cAMP hydrolyzing phosphodiesterase 3A (PDE3A) was significantly reduced in human failing hearts, accompanied by up-regulation of inducible cAMP early repressor (ICER) expression. Angiotensin II (Ang II) and the β-adrenergic receptor agonist isoproterenol (ISO) also induced persistent PDE3A down-regulation and concomitant ICER up-regulation in vitro, which is important in Ang II- and ISO-induced cardiomyocyte apoptosis. We hypothesized that interactions between PDE3A and ICER may constitute an autoregulatory positive feedback loop (PDE3A-ICER feedback loop), and this loop would cause persistent PDE3A down-regulation and ICER up-regulation. Here, we demonstrate that ICER induction repressed PDE3A gene transcription. PDE3A down-regulation activated cAMP/PKA signaling, leading to ICER up-regulation via PKA-dependent stabilization of ICER. With respect to Ang II, the initiation of the PDE3A-ICER feedback loop depends on activation of Ang II type 1 receptor (AT1R), classical PKC(s), and CREB (cAMP response element binding protein). We further show that the PDE3A-ICER feedback loop is essential for Ang II-induced cardiomyocyte apoptosis. ISO and PDE3 inhibitors also induced the PDE3A-ICER feedback loop and subsequent cardiomyocyte apoptosis, highlighting the importance of this PDE3A-ICER feedback loop and cAMP signaling in cardiomyocyte apoptosis. Our findings may provide a therapeutic paradigm to prevent cardiomyocyte apoptosis and the progression of heart failure by inhibiting the PDE3A-ICER feedback loop.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16186489</pmid><doi>10.1073/pnas.0506489102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-10, Vol.102 (41), p.14771-14776 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_4143392 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | 3',5'-Cyclic-AMP Phosphodiesterases - metabolism Animals Apoptosis Apoptosis - physiology Biological Sciences Blood Pressure Conserved Sequence - genetics Control loops Cyclic AMP Response Element Modulator - metabolism Cyclic Nucleotide Phosphodiesterases, Type 3 Down regulation Enzymes Feedback, Physiological - physiology Gene Expression Regulation Genes Genomics Heart Heart failure Heart Rate Luciferases Myocardium Myocytes, Cardiac - metabolism Myocytes, Cardiac - physiology Positive feedback Promoter regions Promoter Regions, Genetic - genetics Rats Rats, Sprague-Dawley Signal Transduction - physiology Up regulation |
title | A Positive Feedback Loop of Phosphodiesterase 3 (PDE3) and Inducible cAMP Early Repressor (ICER) Leads to Cardiomyocyte Apoptosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Positive%20Feedback%20Loop%20of%20Phosphodiesterase%203%20(PDE3)%20and%20Inducible%20cAMP%20Early%20Repressor%20(ICER)%20Leads%20to%20Cardiomyocyte%20Apoptosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ding,%20Bo&rft.date=2005-10-11&rft.volume=102&rft.issue=41&rft.spage=14771&rft.epage=14776&rft.pages=14771-14776&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0506489102&rft_dat=%3Cjstor_proqu%3E4143392%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c595t-7c6e0134d6907806229e7e5800947a41076ba7f06289ab9677307ba0591bf0f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201358182&rft_id=info:pmid/16186489&rft_jstor_id=4143392&rfr_iscdi=true |