Loading…

Three Independent Biological Mechanisms Cause Exercise-Associated Hyponatremia: Evidence from 2,135 Weighed Competitive Athletic Performances

To evaluate the role of fluid and Na+ balance in the development of exercise-associated hyponatremia (EAH), changes in serum Na+ concentrations ([Na+]) and in body weight were analyzed in 2,135 athletes in endurance events. Eighty-nine percent of athletes completed these events either euhydrated (39...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (51), p.18550-18555
Main Authors: T. D. Noakes, K. Sharwood, D. Speedy, T. Hew, S. Reid, J. Dugas, C. Almond, P. Wharam, L. Weschler, Myers, Norman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To evaluate the role of fluid and Na+ balance in the development of exercise-associated hyponatremia (EAH), changes in serum Na+ concentrations ([Na+]) and in body weight were analyzed in 2,135 athletes in endurance events. Eighty-nine percent of athletes completed these events either euhydrated (39%) or with weight loss (50%) and with normal (80%) or elevated (13%) serum [Na+]. Of 231 (11%) athletes who gained weight during exercise, 70% were normonatremic or hypernatremic, 19% had a serum [Na+] between 129-135 mmol/liter, and 11% a serum [Na+] of 500 mmol) into an expanded volume of total body water. This Na+ likely originated from osmotically inactive, exchangeable stores. Thus, EAH occurs in athletes who (i) drink to excess during exercise, (ii) retain excess fluid because of inadequate suppression of antidiuretic hormone secretion, and (iii) osmotically inactivate circulating Na+ or fail to mobilize osmotically inactive sodium from internal stores. EAH can be prevented by insuring that athletes do not drink to excess during exercise, which has been known since 1985.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0509096102