Loading…

Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry

The developments in lithographic tools for the production of an integrated circuit (IC) are ruled by 'Moore's Law': the density of components on an IC doubles in about every two years. The corresponding size reduction of the smallest detail in an IC entails several technological break...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2012-08, Vol.370 (1973), p.3950-3972
Main Author: Schmidt, Robert-H. Munnig
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c605t-b5a573938053556caee40e29f4f922b21607a050d6c384ed6c8343d3d479bdda3
cites cdi_FETCH-LOGICAL-c605t-b5a573938053556caee40e29f4f922b21607a050d6c384ed6c8343d3d479bdda3
container_end_page 3972
container_issue 1973
container_start_page 3950
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 370
creator Schmidt, Robert-H. Munnig
description The developments in lithographic tools for the production of an integrated circuit (IC) are ruled by 'Moore's Law': the density of components on an IC doubles in about every two years. The corresponding size reduction of the smallest detail in an IC entails several technological breakthroughs. The wafer scanner, the exposure system that defines those details, is the determining factor in these developments. This review deals with those aspects of the positioning systems inside these wafer scanners that enable the extension of Moore's Law into the future. The design of these systems is increasingly difficult because of the accuracy levels in the sub-nanometre range coupled with motion velocities of several metres per second. In addition to the use of feedback control for the reduction of errors, high-precision model-based feed-forward control is required with an almost ideally reproducible motion-system behaviour and a strict limitation of random disturbing events. The full mastering of this behaviour even includes material drift on an atomic scale and is decisive for the future success of these machines.
doi_str_mv 10.1098/rsta.2011.0054
format article
fullrecord <record><control><sourceid>jstor_royal</sourceid><recordid>TN_cdi_jstor_primary_41582994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41582994</jstor_id><sourcerecordid>41582994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-b5a573938053556caee40e29f4f922b21607a050d6c384ed6c8343d3d479bdda3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEog_YsgNlySaD346XVcWjqBUSTBFCQpbHuZnxNBOntoM6_HocUkZCCFb32ufzubrHRfEMowVGqn4VYjILgjBeIMTZg-IYM4krogR5mHsqWMUR_XJUnMS4RRkTnDwujgipEWFKHhffrrsUTDUEsC4635fQr10PEFy_Ll1fdi5t_DqYYeNsCXeDj2OAEm5HN-ygT2XrQ5k2UEbYOev7ZrQp37jcxBT2T4pHrekiPL2vp8X1m9fL83fV5Ye3F-dnl5UViKdqxQ2XVNEaccq5sAaAISCqZa0iZEWwQNIgjhphac0gl5oy2tCGSbVqGkNPi5ez7xD87Qgx6Z2LFrrO9ODHqDEiohZSKJHRxYza4GMM0OohuJ0J-wzpKVI9RaqnSPUUaX7w4t57XO2gOeC_M8wAnYHg93lJbx2kvd76MfT5-G_bm_-9-vhpefadSuRwnqBRTTGSRHKqf7hhtsqidjGOoH8hf9r_Pe35PG0b8_8cdmCY10SpSa9m3cUEdwfdhBstJJVcf66Zpl_x8up9bq7oT4r4wNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1026867696</pqid></control><display><type>article</type><title>Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry</title><source>JSTOR</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Schmidt, Robert-H. Munnig</creator><creatorcontrib>Schmidt, Robert-H. Munnig</creatorcontrib><description>The developments in lithographic tools for the production of an integrated circuit (IC) are ruled by 'Moore's Law': the density of components on an IC doubles in about every two years. The corresponding size reduction of the smallest detail in an IC entails several technological breakthroughs. The wafer scanner, the exposure system that defines those details, is the determining factor in these developments. This review deals with those aspects of the positioning systems inside these wafer scanners that enable the extension of Moore's Law into the future. The design of these systems is increasingly difficult because of the accuracy levels in the sub-nanometre range coupled with motion velocities of several metres per second. In addition to the use of feedback control for the reduction of errors, high-precision model-based feed-forward control is required with an almost ideally reproducible motion-system behaviour and a strict limitation of random disturbing events. The full mastering of this behaviour even includes material drift on an atomic scale and is decisive for the future success of these machines.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2011.0054</identifier><identifier>PMID: 22802497</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Average linear density ; Control ; Lithography ; Mass ; Mechatronics ; Metrology ; Precision Positioning ; Review ; Semiconductor wafers ; Semiconductors ; Sensors ; Silicon ; Stability ; Stiffness ; Vibration</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2012-08, Vol.370 (1973), p.3950-3972</ispartof><rights>COPYRIGHT © 2012 The Royal Society</rights><rights>This journal is © 2012 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-b5a573938053556caee40e29f4f922b21607a050d6c384ed6c8343d3d479bdda3</citedby><cites>FETCH-LOGICAL-c605t-b5a573938053556caee40e29f4f922b21607a050d6c384ed6c8343d3d479bdda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41582994$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41582994$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22802497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Robert-H. Munnig</creatorcontrib><title>Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>The developments in lithographic tools for the production of an integrated circuit (IC) are ruled by 'Moore's Law': the density of components on an IC doubles in about every two years. The corresponding size reduction of the smallest detail in an IC entails several technological breakthroughs. The wafer scanner, the exposure system that defines those details, is the determining factor in these developments. This review deals with those aspects of the positioning systems inside these wafer scanners that enable the extension of Moore's Law into the future. The design of these systems is increasingly difficult because of the accuracy levels in the sub-nanometre range coupled with motion velocities of several metres per second. In addition to the use of feedback control for the reduction of errors, high-precision model-based feed-forward control is required with an almost ideally reproducible motion-system behaviour and a strict limitation of random disturbing events. The full mastering of this behaviour even includes material drift on an atomic scale and is decisive for the future success of these machines.</description><subject>Average linear density</subject><subject>Control</subject><subject>Lithography</subject><subject>Mass</subject><subject>Mechatronics</subject><subject>Metrology</subject><subject>Precision Positioning</subject><subject>Review</subject><subject>Semiconductor wafers</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Stability</subject><subject>Stiffness</subject><subject>Vibration</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhSMEog_YsgNlySaD346XVcWjqBUSTBFCQpbHuZnxNBOntoM6_HocUkZCCFb32ufzubrHRfEMowVGqn4VYjILgjBeIMTZg-IYM4krogR5mHsqWMUR_XJUnMS4RRkTnDwujgipEWFKHhffrrsUTDUEsC4635fQr10PEFy_Ll1fdi5t_DqYYeNsCXeDj2OAEm5HN-ygT2XrQ5k2UEbYOev7ZrQp37jcxBT2T4pHrekiPL2vp8X1m9fL83fV5Ye3F-dnl5UViKdqxQ2XVNEaccq5sAaAISCqZa0iZEWwQNIgjhphac0gl5oy2tCGSbVqGkNPi5ez7xD87Qgx6Z2LFrrO9ODHqDEiohZSKJHRxYza4GMM0OohuJ0J-wzpKVI9RaqnSPUUaX7w4t57XO2gOeC_M8wAnYHg93lJbx2kvd76MfT5-G_bm_-9-vhpefadSuRwnqBRTTGSRHKqf7hhtsqidjGOoH8hf9r_Pe35PG0b8_8cdmCY10SpSa9m3cUEdwfdhBstJJVcf66Zpl_x8up9bq7oT4r4wNg</recordid><startdate>20120828</startdate><enddate>20120828</enddate><creator>Schmidt, Robert-H. Munnig</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120828</creationdate><title>Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry</title><author>Schmidt, Robert-H. Munnig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-b5a573938053556caee40e29f4f922b21607a050d6c384ed6c8343d3d479bdda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Average linear density</topic><topic>Control</topic><topic>Lithography</topic><topic>Mass</topic><topic>Mechatronics</topic><topic>Metrology</topic><topic>Precision Positioning</topic><topic>Review</topic><topic>Semiconductor wafers</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Stability</topic><topic>Stiffness</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Robert-H. Munnig</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Robert-H. Munnig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2012-08-28</date><risdate>2012</risdate><volume>370</volume><issue>1973</issue><spage>3950</spage><epage>3972</epage><pages>3950-3972</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The developments in lithographic tools for the production of an integrated circuit (IC) are ruled by 'Moore's Law': the density of components on an IC doubles in about every two years. The corresponding size reduction of the smallest detail in an IC entails several technological breakthroughs. The wafer scanner, the exposure system that defines those details, is the determining factor in these developments. This review deals with those aspects of the positioning systems inside these wafer scanners that enable the extension of Moore's Law into the future. The design of these systems is increasingly difficult because of the accuracy levels in the sub-nanometre range coupled with motion velocities of several metres per second. In addition to the use of feedback control for the reduction of errors, high-precision model-based feed-forward control is required with an almost ideally reproducible motion-system behaviour and a strict limitation of random disturbing events. The full mastering of this behaviour even includes material drift on an atomic scale and is decisive for the future success of these machines.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>22802497</pmid><doi>10.1098/rsta.2011.0054</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2012-08, Vol.370 (1973), p.3950-3972
issn 1364-503X
1471-2962
language eng
recordid cdi_jstor_primary_41582994
source JSTOR; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Average linear density
Control
Lithography
Mass
Mechatronics
Metrology
Precision Positioning
Review
Semiconductor wafers
Semiconductors
Sensors
Silicon
Stability
Stiffness
Vibration
title Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-precision%20engineering%20in%20lithographic%20exposure%20equipment%20for%20the%20semiconductor%20industry&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Schmidt,%20Robert-H.%20Munnig&rft.date=2012-08-28&rft.volume=370&rft.issue=1973&rft.spage=3950&rft.epage=3972&rft.pages=3950-3972&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2011.0054&rft_dat=%3Cjstor_royal%3E41582994%3C/jstor_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c605t-b5a573938053556caee40e29f4f922b21607a050d6c384ed6c8343d3d479bdda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1026867696&rft_id=info:pmid/22802497&rft_jstor_id=41582994&rfr_iscdi=true