Loading…

Assembly and molecular order of two-dimensional peptoid nanosheets through the oil-water interface

Peptoid nanosheets are a recently discovered class of 2D nanomaterial that form from the self-assembly of a sequence-specific peptoid polymer at an air-water interface. Nanosheet formation occurs first through the assembly of a peptoid monolayer and subsequent compression into a bilayer structure. T...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2014-09, Vol.111 (37), p.13284-13289
Main Authors: Robertson, Ellen J., Oliver, Gloria K., Qian, Menglu, Proulx, Caroline, Zuckermann, Ronald N., Richmond, Geraldine L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peptoid nanosheets are a recently discovered class of 2D nanomaterial that form from the self-assembly of a sequence-specific peptoid polymer at an air-water interface. Nanosheet formation occurs first through the assembly of a peptoid monolayer and subsequent compression into a bilayer structure. These bilayer materials span hundreds of micrometers in lateral dimensions and have the potential to be used in a variety of applications, such as in molecular sensors, artificial membranes, and as catalysts. This paper reports that the oil-water interface provides another opportunity for growth of these unique and highly ordered peptoid sheets. The monolayers formed at this interface are found through surface spectroscopic measurements to be highly ordered and electrostatic interactions between the charged moieties, namely carboxylate and ammonium residues, of the peptoid are essential in the ability of these peptoids to form ordered nanosheets at the oil-water interface. Expanding the mechanism of peptoid nanosheet formation to the oil-water interface and understanding the crucial role of electrostatic interactions between peptoid residues in nanosheet formation is essential for increasing the complexity and functionality of these nanomaterials.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1414843111