Loading…

Structure of the ArgRS–GlnRS–AIMP1 complex and its implications for mammalian translation

Significance In higher eukaryotes, aminoacyl-tRNA synthetases (ARSs) are assembled to form a multisynthetase complex (MSC), which plays critical roles in translation and nontranslation functions essential for cell growth and survival of organisms. The MSC complex is comprised of nine different ARSs...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2014-10, Vol.111 (42), p.15084-15089
Main Authors: Fu, Yaoyao, Kim, Youngran, Jin, Kyeong Sik, Kim, Hyun Sook, Kim, Jong Hyun, Wang, DongMing, Park, Minyoung, Jo, Chang Hwa, Kwon, Nam Hoon, Kim, Doyeun, Kim, Myung Hee, Jeon, Young Ho, Hwang, Kwang Yeon, Kim, Sunghoon, Cho, Yunje
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-199b17b4fae69791cdf6f04669127022bbfab2dbe5c8e296c3543093496a6d243
cites cdi_FETCH-LOGICAL-c525t-199b17b4fae69791cdf6f04669127022bbfab2dbe5c8e296c3543093496a6d243
container_end_page 15089
container_issue 42
container_start_page 15084
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Fu, Yaoyao
Kim, Youngran
Jin, Kyeong Sik
Kim, Hyun Sook
Kim, Jong Hyun
Wang, DongMing
Park, Minyoung
Jo, Chang Hwa
Kwon, Nam Hoon
Kim, Doyeun
Kim, Myung Hee
Jeon, Young Ho
Hwang, Kwang Yeon
Kim, Sunghoon
Cho, Yunje
description Significance In higher eukaryotes, aminoacyl-tRNA synthetases (ARSs) are assembled to form a multisynthetase complex (MSC), which plays critical roles in translation and nontranslation functions essential for cell growth and survival of organisms. The MSC complex is comprised of nine different ARSs and three accessary proteins. The crystal structure of the arginyl-tRNA synthetase (ArgRS)–glutaminyl-tRNA synthase–aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) subcomplex reveals that the N-terminal domains of ArgRS and AIMP1 form an extended coiled-coil structure, which provides a central depot for the assembly of a ternary complex. The stability of the N-terminal helix of ArgRS is critical for its ARS activity and noncanonical function of the subcomplex, explaining the significance of the MSC structure in translation and cellular functions. In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.
doi_str_mv 10.1073/pnas.1408836111
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_jstor_primary_43189882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43189882</jstor_id><sourcerecordid>43189882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-199b17b4fae69791cdf6f04669127022bbfab2dbe5c8e296c3543093496a6d243</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhSMEokNhzQqw1A2btPf6L_YGaVSVUqkIxNAlspzEmXqUxIOdINjxDrwhT0LSGYaf1ZV1v3t0jk-WPUU4RSjY2ba36RQ5KMUkIt7LFggac8k13M8WALTIFaf8KHuU0gYAtFDwMDuigipVFGKRfVoNcayGMToSGjLcOrKM6w-rn99_XLb93VxevX2PpArdtnVfie1r4odE_PT0lR186BNpQiSd7TrbetuTIdo-tXerx9mDxrbJPdnP4-zm9cXH8zf59bvLq_PldV4JKoYctS6xKHljndSFxqpuZANcSo20AErLsrElrUsnKuWolhUTnIFmXEsra8rZcfZqp7sdy87VlesnE63ZRt_Z-M0E682_m97fmnX4YjhFYAwngZd7gRg-jy4NpvOpcm1rexfGZFABAyUEygk9-Q_dhDH2UzyDEqVAJTSdqLMdVcWQUnTNwQyCmaszc3XmT3XTxfO_Mxz4311NANkD8-VBDnFKYVCAmv_h2Q7ZpCHEA8MZKq3U7OrFbt_YYOw6-mRuVhRQAiDTBQD7BTEOs_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616518592</pqid></control><display><type>article</type><title>Structure of the ArgRS–GlnRS–AIMP1 complex and its implications for mammalian translation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Fu, Yaoyao ; Kim, Youngran ; Jin, Kyeong Sik ; Kim, Hyun Sook ; Kim, Jong Hyun ; Wang, DongMing ; Park, Minyoung ; Jo, Chang Hwa ; Kwon, Nam Hoon ; Kim, Doyeun ; Kim, Myung Hee ; Jeon, Young Ho ; Hwang, Kwang Yeon ; Kim, Sunghoon ; Cho, Yunje</creator><creatorcontrib>Fu, Yaoyao ; Kim, Youngran ; Jin, Kyeong Sik ; Kim, Hyun Sook ; Kim, Jong Hyun ; Wang, DongMing ; Park, Minyoung ; Jo, Chang Hwa ; Kwon, Nam Hoon ; Kim, Doyeun ; Kim, Myung Hee ; Jeon, Young Ho ; Hwang, Kwang Yeon ; Kim, Sunghoon ; Cho, Yunje</creatorcontrib><description>Significance In higher eukaryotes, aminoacyl-tRNA synthetases (ARSs) are assembled to form a multisynthetase complex (MSC), which plays critical roles in translation and nontranslation functions essential for cell growth and survival of organisms. The MSC complex is comprised of nine different ARSs and three accessary proteins. The crystal structure of the arginyl-tRNA synthetase (ArgRS)–glutaminyl-tRNA synthase–aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) subcomplex reveals that the N-terminal domains of ArgRS and AIMP1 form an extended coiled-coil structure, which provides a central depot for the assembly of a ternary complex. The stability of the N-terminal helix of ArgRS is critical for its ARS activity and noncanonical function of the subcomplex, explaining the significance of the MSC structure in translation and cellular functions. In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1408836111</identifier><identifier>PMID: 25288775</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Amino acids ; Amino Acyl-tRNA Synthetases - chemistry ; arginine-tRNA ligase ; Arginine-tRNA Ligase - chemistry ; Binding Sites ; Biochemistry ; Biological Sciences ; Catalytic activity ; Cell growth ; Chromatography, Gel ; Circular Dichroism ; Crystal structure ; Crystallography, X-Ray ; Cytokines - chemistry ; Escherichia coli - metabolism ; Eukaryotes ; eukaryotic cells ; Glutathione Transferase - chemistry ; Humans ; Mammals ; Models, Molecular ; Molecular structure ; Multiprotein Complexes ; Mutagenesis ; Mutation ; Neoplasm Proteins - chemistry ; Protein Biosynthesis ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein synthesis ; Proteins ; RNA-Binding Proteins - chemistry ; Scattering, Radiation ; Transfer RNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15084-15089</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 21, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-199b17b4fae69791cdf6f04669127022bbfab2dbe5c8e296c3543093496a6d243</citedby><cites>FETCH-LOGICAL-c525t-199b17b4fae69791cdf6f04669127022bbfab2dbe5c8e296c3543093496a6d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43189882$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43189882$$EHTML$$P50$$Gjstor$$H</linktohtml><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25288775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Yaoyao</creatorcontrib><creatorcontrib>Kim, Youngran</creatorcontrib><creatorcontrib>Jin, Kyeong Sik</creatorcontrib><creatorcontrib>Kim, Hyun Sook</creatorcontrib><creatorcontrib>Kim, Jong Hyun</creatorcontrib><creatorcontrib>Wang, DongMing</creatorcontrib><creatorcontrib>Park, Minyoung</creatorcontrib><creatorcontrib>Jo, Chang Hwa</creatorcontrib><creatorcontrib>Kwon, Nam Hoon</creatorcontrib><creatorcontrib>Kim, Doyeun</creatorcontrib><creatorcontrib>Kim, Myung Hee</creatorcontrib><creatorcontrib>Jeon, Young Ho</creatorcontrib><creatorcontrib>Hwang, Kwang Yeon</creatorcontrib><creatorcontrib>Kim, Sunghoon</creatorcontrib><creatorcontrib>Cho, Yunje</creatorcontrib><title>Structure of the ArgRS–GlnRS–AIMP1 complex and its implications for mammalian translation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance In higher eukaryotes, aminoacyl-tRNA synthetases (ARSs) are assembled to form a multisynthetase complex (MSC), which plays critical roles in translation and nontranslation functions essential for cell growth and survival of organisms. The MSC complex is comprised of nine different ARSs and three accessary proteins. The crystal structure of the arginyl-tRNA synthetase (ArgRS)–glutaminyl-tRNA synthase–aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) subcomplex reveals that the N-terminal domains of ArgRS and AIMP1 form an extended coiled-coil structure, which provides a central depot for the assembly of a ternary complex. The stability of the N-terminal helix of ArgRS is critical for its ARS activity and noncanonical function of the subcomplex, explaining the significance of the MSC structure in translation and cellular functions. In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.</description><subject>Active sites</subject><subject>Amino acids</subject><subject>Amino Acyl-tRNA Synthetases - chemistry</subject><subject>arginine-tRNA ligase</subject><subject>Arginine-tRNA Ligase - chemistry</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalytic activity</subject><subject>Cell growth</subject><subject>Chromatography, Gel</subject><subject>Circular Dichroism</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Cytokines - chemistry</subject><subject>Escherichia coli - metabolism</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Glutathione Transferase - chemistry</subject><subject>Humans</subject><subject>Mammals</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Multiprotein Complexes</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Neoplasm Proteins - chemistry</subject><subject>Protein Biosynthesis</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>Scattering, Radiation</subject><subject>Transfer RNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhSMEokNhzQqw1A2btPf6L_YGaVSVUqkIxNAlspzEmXqUxIOdINjxDrwhT0LSGYaf1ZV1v3t0jk-WPUU4RSjY2ba36RQ5KMUkIt7LFggac8k13M8WALTIFaf8KHuU0gYAtFDwMDuigipVFGKRfVoNcayGMToSGjLcOrKM6w-rn99_XLb93VxevX2PpArdtnVfie1r4odE_PT0lR186BNpQiSd7TrbetuTIdo-tXerx9mDxrbJPdnP4-zm9cXH8zf59bvLq_PldV4JKoYctS6xKHljndSFxqpuZANcSo20AErLsrElrUsnKuWolhUTnIFmXEsra8rZcfZqp7sdy87VlesnE63ZRt_Z-M0E682_m97fmnX4YjhFYAwngZd7gRg-jy4NpvOpcm1rexfGZFABAyUEygk9-Q_dhDH2UzyDEqVAJTSdqLMdVcWQUnTNwQyCmaszc3XmT3XTxfO_Mxz4311NANkD8-VBDnFKYVCAmv_h2Q7ZpCHEA8MZKq3U7OrFbt_YYOw6-mRuVhRQAiDTBQD7BTEOs_A</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Fu, Yaoyao</creator><creator>Kim, Youngran</creator><creator>Jin, Kyeong Sik</creator><creator>Kim, Hyun Sook</creator><creator>Kim, Jong Hyun</creator><creator>Wang, DongMing</creator><creator>Park, Minyoung</creator><creator>Jo, Chang Hwa</creator><creator>Kwon, Nam Hoon</creator><creator>Kim, Doyeun</creator><creator>Kim, Myung Hee</creator><creator>Jeon, Young Ho</creator><creator>Hwang, Kwang Yeon</creator><creator>Kim, Sunghoon</creator><creator>Cho, Yunje</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141021</creationdate><title>Structure of the ArgRS–GlnRS–AIMP1 complex and its implications for mammalian translation</title><author>Fu, Yaoyao ; Kim, Youngran ; Jin, Kyeong Sik ; Kim, Hyun Sook ; Kim, Jong Hyun ; Wang, DongMing ; Park, Minyoung ; Jo, Chang Hwa ; Kwon, Nam Hoon ; Kim, Doyeun ; Kim, Myung Hee ; Jeon, Young Ho ; Hwang, Kwang Yeon ; Kim, Sunghoon ; Cho, Yunje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-199b17b4fae69791cdf6f04669127022bbfab2dbe5c8e296c3543093496a6d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Active sites</topic><topic>Amino acids</topic><topic>Amino Acyl-tRNA Synthetases - chemistry</topic><topic>arginine-tRNA ligase</topic><topic>Arginine-tRNA Ligase - chemistry</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalytic activity</topic><topic>Cell growth</topic><topic>Chromatography, Gel</topic><topic>Circular Dichroism</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Cytokines - chemistry</topic><topic>Escherichia coli - metabolism</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Glutathione Transferase - chemistry</topic><topic>Humans</topic><topic>Mammals</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Multiprotein Complexes</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Neoplasm Proteins - chemistry</topic><topic>Protein Biosynthesis</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>Scattering, Radiation</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yaoyao</creatorcontrib><creatorcontrib>Kim, Youngran</creatorcontrib><creatorcontrib>Jin, Kyeong Sik</creatorcontrib><creatorcontrib>Kim, Hyun Sook</creatorcontrib><creatorcontrib>Kim, Jong Hyun</creatorcontrib><creatorcontrib>Wang, DongMing</creatorcontrib><creatorcontrib>Park, Minyoung</creatorcontrib><creatorcontrib>Jo, Chang Hwa</creatorcontrib><creatorcontrib>Kwon, Nam Hoon</creatorcontrib><creatorcontrib>Kim, Doyeun</creatorcontrib><creatorcontrib>Kim, Myung Hee</creatorcontrib><creatorcontrib>Jeon, Young Ho</creatorcontrib><creatorcontrib>Hwang, Kwang Yeon</creatorcontrib><creatorcontrib>Kim, Sunghoon</creatorcontrib><creatorcontrib>Cho, Yunje</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yaoyao</au><au>Kim, Youngran</au><au>Jin, Kyeong Sik</au><au>Kim, Hyun Sook</au><au>Kim, Jong Hyun</au><au>Wang, DongMing</au><au>Park, Minyoung</au><au>Jo, Chang Hwa</au><au>Kwon, Nam Hoon</au><au>Kim, Doyeun</au><au>Kim, Myung Hee</au><au>Jeon, Young Ho</au><au>Hwang, Kwang Yeon</au><au>Kim, Sunghoon</au><au>Cho, Yunje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the ArgRS–GlnRS–AIMP1 complex and its implications for mammalian translation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>111</volume><issue>42</issue><spage>15084</spage><epage>15089</epage><pages>15084-15089</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance In higher eukaryotes, aminoacyl-tRNA synthetases (ARSs) are assembled to form a multisynthetase complex (MSC), which plays critical roles in translation and nontranslation functions essential for cell growth and survival of organisms. The MSC complex is comprised of nine different ARSs and three accessary proteins. The crystal structure of the arginyl-tRNA synthetase (ArgRS)–glutaminyl-tRNA synthase–aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) subcomplex reveals that the N-terminal domains of ArgRS and AIMP1 form an extended coiled-coil structure, which provides a central depot for the assembly of a ternary complex. The stability of the N-terminal helix of ArgRS is critical for its ARS activity and noncanonical function of the subcomplex, explaining the significance of the MSC structure in translation and cellular functions. In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25288775</pmid><doi>10.1073/pnas.1408836111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15084-15089
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_43189882
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Active sites
Amino acids
Amino Acyl-tRNA Synthetases - chemistry
arginine-tRNA ligase
Arginine-tRNA Ligase - chemistry
Binding Sites
Biochemistry
Biological Sciences
Catalytic activity
Cell growth
Chromatography, Gel
Circular Dichroism
Crystal structure
Crystallography, X-Ray
Cytokines - chemistry
Escherichia coli - metabolism
Eukaryotes
eukaryotic cells
Glutathione Transferase - chemistry
Humans
Mammals
Models, Molecular
Molecular structure
Multiprotein Complexes
Mutagenesis
Mutation
Neoplasm Proteins - chemistry
Protein Biosynthesis
Protein Structure, Secondary
Protein Structure, Tertiary
Protein synthesis
Proteins
RNA-Binding Proteins - chemistry
Scattering, Radiation
Transfer RNA
title Structure of the ArgRS–GlnRS–AIMP1 complex and its implications for mammalian translation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T16%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20ArgRS%E2%80%93GlnRS%E2%80%93AIMP1%20complex%20and%20its%20implications%20for%20mammalian%20translation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fu,%20Yaoyao&rft.date=2014-10-21&rft.volume=111&rft.issue=42&rft.spage=15084&rft.epage=15089&rft.pages=15084-15089&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1408836111&rft_dat=%3Cjstor_pubme%3E43189882%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-199b17b4fae69791cdf6f04669127022bbfab2dbe5c8e296c3543093496a6d243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1616518592&rft_id=info:pmid/25288775&rft_jstor_id=43189882&rfr_iscdi=true