Loading…

Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions

We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that,...

Full description

Saved in:
Bibliographic Details
Published in:Lecture notes-monograph series 2006-01, Vol.48, p.85-99
Main Author: Yves Guivarc'h
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 99
container_issue
container_start_page 85
container_title Lecture notes-monograph series
container_volume 48
creator Yves Guivarc'h
description We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that, in general, its law has a heavy tail behavior and we study the corresponding directions. This provides a natural construction of laws with heavy tails in great generality. Our main result extends to the general case the results previously obtained by H. Kesten in [16] under positivity or density assumptions, and the results recently developed in [17] in a special framework.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_4356363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4356363</jstor_id><sourcerecordid>4356363</sourcerecordid><originalsourceid>FETCH-jstor_primary_43563633</originalsourceid><addsrcrecordid>eNpjYeA0MDex1DUyNDfgYOAqLs4yMDAzsjAz52QI90hNLKtUCEnMzFEIKMovSC0qyUwtVshPUwguSSzJzM9LLKpUCM7PKQWxweK-pTklmSmZual5xSDpHKDC_OSMxOKSzGSFoNTk0iKQcDEPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLyjKzAWaHG9ibGpmbGZsTEAaALVPPUM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions</title><source>Project Euclid Open Access(OpenAccess)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Yves Guivarc'h</creator><creatorcontrib>Yves Guivarc'h</creatorcontrib><description>We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that, in general, its law has a heavy tail behavior and we study the corresponding directions. This provides a natural construction of laws with heavy tails in great generality. Our main result extends to the general case the results previously obtained by H. Kesten in [16] under positivity or density assumptions, and the results recently developed in [17] in a special framework.</description><identifier>ISSN: 0749-2170</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Geometry ; Infinity ; Markov chains ; Mathematical theorems ; Matrices ; Mellin transforms ; Radon ; Random Processes ; Random walk ; Recursion</subject><ispartof>Lecture notes-monograph series, 2006-01, Vol.48, p.85-99</ispartof><rights>Copyright 2006 Institute of Mathematical Statistics</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4356363$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4356363$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,58219,58452</link.rule.ids></links><search><creatorcontrib>Yves Guivarc'h</creatorcontrib><title>Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions</title><title>Lecture notes-monograph series</title><description>We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that, in general, its law has a heavy tail behavior and we study the corresponding directions. This provides a natural construction of laws with heavy tails in great generality. Our main result extends to the general case the results previously obtained by H. Kesten in [16] under positivity or density assumptions, and the results recently developed in [17] in a special framework.</description><subject>Geometry</subject><subject>Infinity</subject><subject>Markov chains</subject><subject>Mathematical theorems</subject><subject>Matrices</subject><subject>Mellin transforms</subject><subject>Radon</subject><subject>Random Processes</subject><subject>Random walk</subject><subject>Recursion</subject><issn>0749-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0MDex1DUyNDfgYOAqLs4yMDAzsjAz52QI90hNLKtUCEnMzFEIKMovSC0qyUwtVshPUwguSSzJzM9LLKpUCM7PKQWxweK-pTklmSmZual5xSDpHKDC_OSMxOKSzGSFoNTk0iKQcDEPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLyjKzAWaHG9ibGpmbGZsTEAaALVPPUM</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Yves Guivarc'h</creator><general>Institute of Mathematical Statistics</general><scope/></search><sort><creationdate>20060101</creationdate><title>Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions</title><author>Yves Guivarc'h</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_43563633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Geometry</topic><topic>Infinity</topic><topic>Markov chains</topic><topic>Mathematical theorems</topic><topic>Matrices</topic><topic>Mellin transforms</topic><topic>Radon</topic><topic>Random Processes</topic><topic>Random walk</topic><topic>Recursion</topic><toplevel>online_resources</toplevel><creatorcontrib>Yves Guivarc'h</creatorcontrib><jtitle>Lecture notes-monograph series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yves Guivarc'h</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions</atitle><jtitle>Lecture notes-monograph series</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>48</volume><spage>85</spage><epage>99</epage><pages>85-99</pages><issn>0749-2170</issn><abstract>We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that, in general, its law has a heavy tail behavior and we study the corresponding directions. This provides a natural construction of laws with heavy tails in great generality. Our main result extends to the general case the results previously obtained by H. Kesten in [16] under positivity or density assumptions, and the results recently developed in [17] in a special framework.</abstract><pub>Institute of Mathematical Statistics</pub></addata></record>
fulltext fulltext
identifier ISSN: 0749-2170
ispartof Lecture notes-monograph series, 2006-01, Vol.48, p.85-99
issn 0749-2170
language eng
recordid cdi_jstor_primary_4356363
source Project Euclid Open Access(OpenAccess); JSTOR Archival Journals and Primary Sources Collection
subjects Geometry
Infinity
Markov chains
Mathematical theorems
Matrices
Mellin transforms
Radon
Random Processes
Random walk
Recursion
title Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heavy%20Tail%20Properties%20of%20Stationary%20Solutions%20of%20Multidimensional%20Stochastic%20Recursions&rft.jtitle=Lecture%20notes-monograph%20series&rft.au=Yves%20Guivarc'h&rft.date=2006-01-01&rft.volume=48&rft.spage=85&rft.epage=99&rft.pages=85-99&rft.issn=0749-2170&rft_id=info:doi/&rft_dat=%3Cjstor%3E4356363%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_43563633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4356363&rfr_iscdi=true