Loading…
Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions
We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that,...
Saved in:
Published in: | Lecture notes-monograph series 2006-01, Vol.48, p.85-99 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 99 |
container_issue | |
container_start_page | 85 |
container_title | Lecture notes-monograph series |
container_volume | 48 |
creator | Yves Guivarc'h |
description | We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that, in general, its law has a heavy tail behavior and we study the corresponding directions. This provides a natural construction of laws with heavy tails in great generality. Our main result extends to the general case the results previously obtained by H. Kesten in [16] under positivity or density assumptions, and the results recently developed in [17] in a special framework. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_4356363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4356363</jstor_id><sourcerecordid>4356363</sourcerecordid><originalsourceid>FETCH-jstor_primary_43563633</originalsourceid><addsrcrecordid>eNpjYeA0MDex1DUyNDfgYOAqLs4yMDAzsjAz52QI90hNLKtUCEnMzFEIKMovSC0qyUwtVshPUwguSSzJzM9LLKpUCM7PKQWxweK-pTklmSmZual5xSDpHKDC_OSMxOKSzGSFoNTk0iKQcDEPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLyjKzAWaHG9ibGpmbGZsTEAaALVPPUM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions</title><source>Project Euclid Open Access(OpenAccess)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Yves Guivarc'h</creator><creatorcontrib>Yves Guivarc'h</creatorcontrib><description>We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that, in general, its law has a heavy tail behavior and we study the corresponding directions. This provides a natural construction of laws with heavy tails in great generality. Our main result extends to the general case the results previously obtained by H. Kesten in [16] under positivity or density assumptions, and the results recently developed in [17] in a special framework.</description><identifier>ISSN: 0749-2170</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Geometry ; Infinity ; Markov chains ; Mathematical theorems ; Matrices ; Mellin transforms ; Radon ; Random Processes ; Random walk ; Recursion</subject><ispartof>Lecture notes-monograph series, 2006-01, Vol.48, p.85-99</ispartof><rights>Copyright 2006 Institute of Mathematical Statistics</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4356363$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4356363$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,58219,58452</link.rule.ids></links><search><creatorcontrib>Yves Guivarc'h</creatorcontrib><title>Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions</title><title>Lecture notes-monograph series</title><description>We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that, in general, its law has a heavy tail behavior and we study the corresponding directions. This provides a natural construction of laws with heavy tails in great generality. Our main result extends to the general case the results previously obtained by H. Kesten in [16] under positivity or density assumptions, and the results recently developed in [17] in a special framework.</description><subject>Geometry</subject><subject>Infinity</subject><subject>Markov chains</subject><subject>Mathematical theorems</subject><subject>Matrices</subject><subject>Mellin transforms</subject><subject>Radon</subject><subject>Random Processes</subject><subject>Random walk</subject><subject>Recursion</subject><issn>0749-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0MDex1DUyNDfgYOAqLs4yMDAzsjAz52QI90hNLKtUCEnMzFEIKMovSC0qyUwtVshPUwguSSzJzM9LLKpUCM7PKQWxweK-pTklmSmZual5xSDpHKDC_OSMxOKSzGSFoNTk0iKQcDEPA2taYk5xKi-U5maQcXMNcfbQzSouyS-KLyjKzAWaHG9ibGpmbGZsTEAaALVPPUM</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Yves Guivarc'h</creator><general>Institute of Mathematical Statistics</general><scope/></search><sort><creationdate>20060101</creationdate><title>Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions</title><author>Yves Guivarc'h</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_43563633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Geometry</topic><topic>Infinity</topic><topic>Markov chains</topic><topic>Mathematical theorems</topic><topic>Matrices</topic><topic>Mellin transforms</topic><topic>Radon</topic><topic>Random Processes</topic><topic>Random walk</topic><topic>Recursion</topic><toplevel>online_resources</toplevel><creatorcontrib>Yves Guivarc'h</creatorcontrib><jtitle>Lecture notes-monograph series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yves Guivarc'h</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions</atitle><jtitle>Lecture notes-monograph series</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>48</volume><spage>85</spage><epage>99</epage><pages>85-99</pages><issn>0749-2170</issn><abstract>We consider the following recurrence relation with random i.i.d. coefficients (an,bn):$x_{n+1}=a_{n+1}x_{n}+b_{n+1}$where$a_{n}\in GL(d,{\Bbb R}),b_{n}\in {\Bbb R}^{d}$. Under natural conditions on (an,bn) this equation has a unique stationary solution, and its support is non-compact. We show that, in general, its law has a heavy tail behavior and we study the corresponding directions. This provides a natural construction of laws with heavy tails in great generality. Our main result extends to the general case the results previously obtained by H. Kesten in [16] under positivity or density assumptions, and the results recently developed in [17] in a special framework.</abstract><pub>Institute of Mathematical Statistics</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-2170 |
ispartof | Lecture notes-monograph series, 2006-01, Vol.48, p.85-99 |
issn | 0749-2170 |
language | eng |
recordid | cdi_jstor_primary_4356363 |
source | Project Euclid Open Access(OpenAccess); JSTOR Archival Journals and Primary Sources Collection |
subjects | Geometry Infinity Markov chains Mathematical theorems Matrices Mellin transforms Radon Random Processes Random walk Recursion |
title | Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heavy%20Tail%20Properties%20of%20Stationary%20Solutions%20of%20Multidimensional%20Stochastic%20Recursions&rft.jtitle=Lecture%20notes-monograph%20series&rft.au=Yves%20Guivarc'h&rft.date=2006-01-01&rft.volume=48&rft.spage=85&rft.epage=99&rft.pages=85-99&rft.issn=0749-2170&rft_id=info:doi/&rft_dat=%3Cjstor%3E4356363%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_43563633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4356363&rfr_iscdi=true |