Loading…
CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS
Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems...
Saved in:
Published in: | Journal of computational mathematics 2004-11, Vol.22 (6), p.791-796 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 796 |
container_issue | 6 |
container_start_page | 791 |
container_title | Journal of computational mathematics |
container_volume | 22 |
creator | Xiao, Ai-guo Gan, Si-qing |
description | Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems. This is an important difference between one-step and multistep symmetric RK methods. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_43693206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43693206</jstor_id><sourcerecordid>43693206</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-1b792851fd3f3ef8012bbfcf0af9ab2a4477983745728ede83fa3be0d03b5c2d3</originalsourceid><addsrcrecordid>eNotzMFKwzAcgPEgCtbpIwh5gUCSf7ok4CXEbC22q7TpQS8jWROwKEq7i2-voKfv8IPvAhVMa0YkA32JCspLQbSg-hrdrOtMKQUuZIEebGV6Y73r61fj6-4w4G6Hh5e2db6vLW7HxteDd8-4Hw97R55G7w3-xap7HG7RVQ7va7r77waNO-dtRZpuX1vTkJlJeSYsSs1VyfIEGVJWlPEY8ynTkHWIPAghpVYgRSm5SlNSkAPERCcKsTzxCTbo_u87r-fP5fi1vH2E5fsoYKuB0y38AIaEPZU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Xiao, Ai-guo ; Gan, Si-qing</creator><creatorcontrib>Xiao, Ai-guo ; Gan, Si-qing</creatorcontrib><description>Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems. This is an important difference between one-step and multistep symmetric RK methods.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</publisher><subject>Computational mathematics ; Mathematics ; Runge Kutta method ; Symmetry</subject><ispartof>Journal of computational mathematics, 2004-11, Vol.22 (6), p.791-796</ispartof><rights>Copyright 2004 AMSS, Chinese Academy of Sciences and VSP</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43693206$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43693206$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Xiao, Ai-guo</creatorcontrib><creatorcontrib>Gan, Si-qing</creatorcontrib><title>CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS</title><title>Journal of computational mathematics</title><description>Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems. This is an important difference between one-step and multistep symmetric RK methods.</description><subject>Computational mathematics</subject><subject>Mathematics</subject><subject>Runge Kutta method</subject><subject>Symmetry</subject><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzMFKwzAcgPEgCtbpIwh5gUCSf7ok4CXEbC22q7TpQS8jWROwKEq7i2-voKfv8IPvAhVMa0YkA32JCspLQbSg-hrdrOtMKQUuZIEebGV6Y73r61fj6-4w4G6Hh5e2db6vLW7HxteDd8-4Hw97R55G7w3-xap7HG7RVQ7va7r77waNO-dtRZpuX1vTkJlJeSYsSs1VyfIEGVJWlPEY8ynTkHWIPAghpVYgRSm5SlNSkAPERCcKsTzxCTbo_u87r-fP5fi1vH2E5fsoYKuB0y38AIaEPZU</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Xiao, Ai-guo</creator><creator>Gan, Si-qing</creator><general>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</general><scope/></search><sort><creationdate>20041101</creationdate><title>CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS</title><author>Xiao, Ai-guo ; Gan, Si-qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-1b792851fd3f3ef8012bbfcf0af9ab2a4477983745728ede83fa3be0d03b5c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computational mathematics</topic><topic>Mathematics</topic><topic>Runge Kutta method</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Ai-guo</creatorcontrib><creatorcontrib>Gan, Si-qing</creatorcontrib><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Ai-guo</au><au>Gan, Si-qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS</atitle><jtitle>Journal of computational mathematics</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>22</volume><issue>6</issue><spage>791</spage><epage>796</epage><pages>791-796</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems. This is an important difference between one-step and multistep symmetric RK methods.</abstract><pub>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-9409 |
ispartof | Journal of computational mathematics, 2004-11, Vol.22 (6), p.791-796 |
issn | 0254-9409 1991-7139 |
language | eng |
recordid | cdi_jstor_primary_43693206 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Computational mathematics Mathematics Runge Kutta method Symmetry |
title | CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHARACTERIZATIONS%20OF%20SYMMETRIC%20MULTISTEP%20RUNGE-KUTTA%20METHODS&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Xiao,%20Ai-guo&rft.date=2004-11-01&rft.volume=22&rft.issue=6&rft.spage=791&rft.epage=796&rft.pages=791-796&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/&rft_dat=%3Cjstor%3E43693206%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j177t-1b792851fd3f3ef8012bbfcf0af9ab2a4477983745728ede83fa3be0d03b5c2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43693206&rfr_iscdi=true |