Loading…

CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS

Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational mathematics 2004-11, Vol.22 (6), p.791-796
Main Authors: Xiao, Ai-guo, Gan, Si-qing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 796
container_issue 6
container_start_page 791
container_title Journal of computational mathematics
container_volume 22
creator Xiao, Ai-guo
Gan, Si-qing
description Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems. This is an important difference between one-step and multistep symmetric RK methods.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_43693206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43693206</jstor_id><sourcerecordid>43693206</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-1b792851fd3f3ef8012bbfcf0af9ab2a4477983745728ede83fa3be0d03b5c2d3</originalsourceid><addsrcrecordid>eNotzMFKwzAcgPEgCtbpIwh5gUCSf7ok4CXEbC22q7TpQS8jWROwKEq7i2-voKfv8IPvAhVMa0YkA32JCspLQbSg-hrdrOtMKQUuZIEebGV6Y73r61fj6-4w4G6Hh5e2db6vLW7HxteDd8-4Hw97R55G7w3-xap7HG7RVQ7va7r77waNO-dtRZpuX1vTkJlJeSYsSs1VyfIEGVJWlPEY8ynTkHWIPAghpVYgRSm5SlNSkAPERCcKsTzxCTbo_u87r-fP5fi1vH2E5fsoYKuB0y38AIaEPZU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Xiao, Ai-guo ; Gan, Si-qing</creator><creatorcontrib>Xiao, Ai-guo ; Gan, Si-qing</creatorcontrib><description>Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems. This is an important difference between one-step and multistep symmetric RK methods.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</publisher><subject>Computational mathematics ; Mathematics ; Runge Kutta method ; Symmetry</subject><ispartof>Journal of computational mathematics, 2004-11, Vol.22 (6), p.791-796</ispartof><rights>Copyright 2004 AMSS, Chinese Academy of Sciences and VSP</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43693206$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43693206$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Xiao, Ai-guo</creatorcontrib><creatorcontrib>Gan, Si-qing</creatorcontrib><title>CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS</title><title>Journal of computational mathematics</title><description>Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems. This is an important difference between one-step and multistep symmetric RK methods.</description><subject>Computational mathematics</subject><subject>Mathematics</subject><subject>Runge Kutta method</subject><subject>Symmetry</subject><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzMFKwzAcgPEgCtbpIwh5gUCSf7ok4CXEbC22q7TpQS8jWROwKEq7i2-voKfv8IPvAhVMa0YkA32JCspLQbSg-hrdrOtMKQUuZIEebGV6Y73r61fj6-4w4G6Hh5e2db6vLW7HxteDd8-4Hw97R55G7w3-xap7HG7RVQ7va7r77waNO-dtRZpuX1vTkJlJeSYsSs1VyfIEGVJWlPEY8ynTkHWIPAghpVYgRSm5SlNSkAPERCcKsTzxCTbo_u87r-fP5fi1vH2E5fsoYKuB0y38AIaEPZU</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Xiao, Ai-guo</creator><creator>Gan, Si-qing</creator><general>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</general><scope/></search><sort><creationdate>20041101</creationdate><title>CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS</title><author>Xiao, Ai-guo ; Gan, Si-qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-1b792851fd3f3ef8012bbfcf0af9ab2a4477983745728ede83fa3be0d03b5c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computational mathematics</topic><topic>Mathematics</topic><topic>Runge Kutta method</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Ai-guo</creatorcontrib><creatorcontrib>Gan, Si-qing</creatorcontrib><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Ai-guo</au><au>Gan, Si-qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS</atitle><jtitle>Journal of computational mathematics</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>22</volume><issue>6</issue><spage>791</spage><epage>796</epage><pages>791-796</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems. This is an important difference between one-step and multistep symmetric RK methods.</abstract><pub>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</pub><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-9409
ispartof Journal of computational mathematics, 2004-11, Vol.22 (6), p.791-796
issn 0254-9409
1991-7139
language eng
recordid cdi_jstor_primary_43693206
source JSTOR Archival Journals and Primary Sources Collection
subjects Computational mathematics
Mathematics
Runge Kutta method
Symmetry
title CHARACTERIZATIONS OF SYMMETRIC MULTISTEP RUNGE-KUTTA METHODS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHARACTERIZATIONS%20OF%20SYMMETRIC%20MULTISTEP%20RUNGE-KUTTA%20METHODS&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Xiao,%20Ai-guo&rft.date=2004-11-01&rft.volume=22&rft.issue=6&rft.spage=791&rft.epage=796&rft.pages=791-796&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/&rft_dat=%3Cjstor%3E43693206%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j177t-1b792851fd3f3ef8012bbfcf0af9ab2a4477983745728ede83fa3be0d03b5c2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43693206&rfr_iscdi=true