Loading…

A NONMONOTONE SECOND-ORDER STEPLENGTH METHOD FOR UNCONSTRAINED MINIMIZATION

In this paper, a nonmonotone method based on McCormick's second-order Armijo's step-size rule [7] for unconstrained optimization problems is proposed. Every limit point of the sequence generated by using this procedure is proved to be a stationary point with the second-order optimality con...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational mathematics 2007-01, Vol.25 (1), p.104-112
Main Authors: Zhou, Qun-yan, Sun, Wen-yu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 112
container_issue 1
container_start_page 104
container_title Journal of computational mathematics
container_volume 25
creator Zhou, Qun-yan
Sun, Wen-yu
description In this paper, a nonmonotone method based on McCormick's second-order Armijo's step-size rule [7] for unconstrained optimization problems is proposed. Every limit point of the sequence generated by using this procedure is proved to be a stationary point with the second-order optimality conditions. Numerical tests on a set of standard test problems are presented and show that the new algorithm is efficient and robust.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_43693349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43693349</jstor_id><sourcerecordid>43693349</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-13d40191838223aedbe5a7eda9cce1cbea9d547d9a428c3663c4422bbe28bc6e3</originalsourceid><addsrcrecordid>eNotzMFKwzAcgPEgDqybjyDkBQJJ_mnTHEubrcE2kTa7eBlpGsGiKO0uvr2Cnr7Lj-8GZUwpRiQDdYsyynNBlKDqDt1v20IpBS5khp4qbJ3tnXXeWY1HXTvbEDc0esCj18-dtiff4l771jX46AZ8tr9k9ENlrG5wb6zpzUvljbMHtHsN71t6-O8enY_a1y3p3MnUVUcWJuWVMJgFZYqVUHIOIc1TyoNMc1AxJhanFNScCzmrIHgZoSggCsH5NCVeTrFIsEePf99lu36ul6_17SOs3xcBhQIQCn4AJzlByg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A NONMONOTONE SECOND-ORDER STEPLENGTH METHOD FOR UNCONSTRAINED MINIMIZATION</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Zhou, Qun-yan ; Sun, Wen-yu</creator><creatorcontrib>Zhou, Qun-yan ; Sun, Wen-yu</creatorcontrib><description>In this paper, a nonmonotone method based on McCormick's second-order Armijo's step-size rule [7] for unconstrained optimization problems is proposed. Every limit point of the sequence generated by using this procedure is proved to be a stationary point with the second-order optimality conditions. Numerical tests on a set of standard test problems are presented and show that the new algorithm is efficient and robust.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</publisher><subject>Algorithms ; Computational mathematics ; Curvature ; Eigenvalues ; Factorization ; Hessian matrices ; Integers ; Saddle points ; Zero vectors</subject><ispartof>Journal of computational mathematics, 2007-01, Vol.25 (1), p.104-112</ispartof><rights>Copyright 2007 AMSS, Chinese Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43693349$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43693349$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58213,58446</link.rule.ids></links><search><creatorcontrib>Zhou, Qun-yan</creatorcontrib><creatorcontrib>Sun, Wen-yu</creatorcontrib><title>A NONMONOTONE SECOND-ORDER STEPLENGTH METHOD FOR UNCONSTRAINED MINIMIZATION</title><title>Journal of computational mathematics</title><description>In this paper, a nonmonotone method based on McCormick's second-order Armijo's step-size rule [7] for unconstrained optimization problems is proposed. Every limit point of the sequence generated by using this procedure is proved to be a stationary point with the second-order optimality conditions. Numerical tests on a set of standard test problems are presented and show that the new algorithm is efficient and robust.</description><subject>Algorithms</subject><subject>Computational mathematics</subject><subject>Curvature</subject><subject>Eigenvalues</subject><subject>Factorization</subject><subject>Hessian matrices</subject><subject>Integers</subject><subject>Saddle points</subject><subject>Zero vectors</subject><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzMFKwzAcgPEgDqybjyDkBQJJ_mnTHEubrcE2kTa7eBlpGsGiKO0uvr2Cnr7Lj-8GZUwpRiQDdYsyynNBlKDqDt1v20IpBS5khp4qbJ3tnXXeWY1HXTvbEDc0esCj18-dtiff4l771jX46AZ8tr9k9ENlrG5wb6zpzUvljbMHtHsN71t6-O8enY_a1y3p3MnUVUcWJuWVMJgFZYqVUHIOIc1TyoNMc1AxJhanFNScCzmrIHgZoSggCsH5NCVeTrFIsEePf99lu36ul6_17SOs3xcBhQIQCn4AJzlByg</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Zhou, Qun-yan</creator><creator>Sun, Wen-yu</creator><general>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</general><scope/></search><sort><creationdate>20070101</creationdate><title>A NONMONOTONE SECOND-ORDER STEPLENGTH METHOD FOR UNCONSTRAINED MINIMIZATION</title><author>Zhou, Qun-yan ; Sun, Wen-yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-13d40191838223aedbe5a7eda9cce1cbea9d547d9a428c3663c4422bbe28bc6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Computational mathematics</topic><topic>Curvature</topic><topic>Eigenvalues</topic><topic>Factorization</topic><topic>Hessian matrices</topic><topic>Integers</topic><topic>Saddle points</topic><topic>Zero vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Qun-yan</creatorcontrib><creatorcontrib>Sun, Wen-yu</creatorcontrib><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Qun-yan</au><au>Sun, Wen-yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NONMONOTONE SECOND-ORDER STEPLENGTH METHOD FOR UNCONSTRAINED MINIMIZATION</atitle><jtitle>Journal of computational mathematics</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>25</volume><issue>1</issue><spage>104</spage><epage>112</epage><pages>104-112</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>In this paper, a nonmonotone method based on McCormick's second-order Armijo's step-size rule [7] for unconstrained optimization problems is proposed. Every limit point of the sequence generated by using this procedure is proved to be a stationary point with the second-order optimality conditions. Numerical tests on a set of standard test problems are presented and show that the new algorithm is efficient and robust.</abstract><pub>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</pub><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-9409
ispartof Journal of computational mathematics, 2007-01, Vol.25 (1), p.104-112
issn 0254-9409
1991-7139
language eng
recordid cdi_jstor_primary_43693349
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】
subjects Algorithms
Computational mathematics
Curvature
Eigenvalues
Factorization
Hessian matrices
Integers
Saddle points
Zero vectors
title A NONMONOTONE SECOND-ORDER STEPLENGTH METHOD FOR UNCONSTRAINED MINIMIZATION
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NONMONOTONE%20SECOND-ORDER%20STEPLENGTH%20METHOD%20FOR%20UNCONSTRAINED%20MINIMIZATION&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Zhou,%20Qun-yan&rft.date=2007-01-01&rft.volume=25&rft.issue=1&rft.spage=104&rft.epage=112&rft.pages=104-112&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/&rft_dat=%3Cjstor%3E43693349%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j177t-13d40191838223aedbe5a7eda9cce1cbea9d547d9a428c3663c4422bbe28bc6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43693349&rfr_iscdi=true