Loading…
THE MAGNETIC POTENTIAL FOR THE ELLIPSOIDAL MEG PROBLEM
In magnetoencephalography (MEG) a primary current is activated within a bounded conductive medium, i.e., the head. The primary current excites an induction current and the total (primary plus induction) current generates a magnetic field which, outside the conductor, is irrotational and solenoidal....
Saved in:
Published in: | Journal of computational mathematics 2007-03, Vol.25 (2), p.145-156 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In magnetoencephalography (MEG) a primary current is activated within a bounded conductive medium, i.e., the head. The primary current excites an induction current and the total (primary plus induction) current generates a magnetic field which, outside the conductor, is irrotational and solenoidal. Consequently, the exterior magnetic field can be expressed as the gradient of a harmonic function, known as the magnetic potential. We show that for the case of a triaxial ellipsoidal conductor this potential is obtained by using integration along a specific path which is dictated by the geometrical characteristics of the ellipsoidal system as well as by utilizing special properties of ellipsoidal harmonics. The vector potential representation of the magnetic field is also obtained. |
---|---|
ISSN: | 0254-9409 1991-7139 |